ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ РЕСНИТЧАТОГО ЭПИТЕЛИЯ ДЫХАТЕЛЬНЫХ ПУТЕЙ У БОЛЬНЫХ БРОНХИАЛЬНОЙ АСТМОЙ
Аннотация и ключевые слова
Аннотация (русский):
При бронхиальной астме в слизистой оболочке бронхиальных путей вследствие хронического воспалительного процесса нарушается работа мукоцилиарной системы и происходит перестройка эпителиального слоя слизистой оболочки, а число мерцательных клеток при тяжелой форме бронхиальной астмы уменьшается вплоть до 70%. Причиной перестройки мерцательного эпителия является накопление в слизистой оболочке большого количества перекисей жирных кислот, под влиянием которых снижается активность сукцинатдегидрогеназы и АТФ в базальных тельцах реснитчатых клеток. При тяжелой форме бронхиальной астмы происходит подавление активности мукоцилиарного клиренса вследствие гибели большого количества реснитчатых клеток слизистой оболочки бронхиальных путей.

Ключевые слова:
бронхиальная астма, мукоцилиарный клиренс.
Список литературы

1. Кисели Д. Практическая микротехника и гистохимия. Будапешт: изд-во АН Венгрии, 1962. 399 с.

2. Лилли Р. Патогистологическая техника и практическая гистохимия. М.: Мир, 1969. 645 с.

3. Лойда З., Гроссрау Р., Шиблер Т. Гистохимия ферментов. Лабораторные методы. М.: Мир. 1982. 270 с.

4. Луценко М.Т., Коненков В.И., Пирогов А.Б. Механизмы этиопатогенеза бронхиальной астмы. Новосибирск; Благовещенск: Амурский государственный университет, 2002. 240 с.

5. Одиреев А.Н., Андриевская И.А., Луценко М.Т. Вклад изменений в системе медиаторов воспаления в формирование мукоцилиарной недостаточности у больных бронхиальной астмой // Бюллетень физиологии и патологии дыхания. 2008. Вып.29. С.18-21.

6. Одиреев А.Н., Чжоу С.Д., Ли Ц., Колосов В.П., Луценко М.Т. Нарушения мукоцилиарного клиренса при бронхиальной астме // Бюллетень физиологии и патологии дыхания. 2010. Вып.37. С.15-21.

7. Heald R. A dynamic duo of microtubule modulators // Nat. Cell Biol. 2000. Vol. 2, №1. P. E11-E12.

8. Hirokawa N., Takemura R. Biochemical and molecular characterization of diseases linked to motor proteins // Trends Biochem. Sci. 2003. Vol.28, №10. P.558-565.

9. Howard J., Hyman A.A. Dynamics and mechanics of the microtubule plus end // Nature. 2003. Vol.422, №6933. P.753-758.

10. Mall M.A. Role of cilia mucus and airway surface liquid in mucociliary dysfunction: lessons from mouse models // J. Med. Pulm. Drug. Deliv. 2008. Vol.21, №1. P.13-24.

11. Pollard T. Polymerization of ADP-actin // J. Cell. Biol. 1984. Vol.99, №3. P.769-777.

12. Pollard T., Borisy G. Cellular motility driven by assembly and disassembly of actin filaments // Cell. 2003. Vol.112, №4. P.453-465.

13. dos Remedios C.G., Chhabra D., Kekic M., Dedova I.V., Tsubakihara M., Berry D.A., Nosworthy N.J. Actin binding proteins: regulation of cytoskeletal microfilaments // Physiol. Rev. 2003. Vol.83, №2. P.433-473.

14. Teff Z., Priel Z., Ghebery L.A. Forces applied by cilia measured on explants from mucociliary tissue // J. Biophys. 2007. Vol.92, Iss.5. P.1813-1823.

15. Zigmond S.H. Formin-induced nucleation of actin filaments // Curr. Opin. Cell. Biol. 2004. Vol.16, №1. P.99-105.

16. Zigmond S.H. Beginning and ending an actin filament: control at the barbed end // Curr. Top. Dev. Biol. 2004. Vol.63. P.145-188.

Войти или Создать
* Забыли пароль?