СОВРЕМЕННЫЕ ТЕНДЕНЦИИ УЛУЧШЕНИЯ СВОЙСТВ ДРЕВЕСИНЫ И ДЕРЕВЯННЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ
Аннотация и ключевые слова
Аннотация (русский):
В течение последних 20-30 лет развитие науки и техники, позволило расширить область применения древесины, а работы в этой области получили настолько большой размах, что обработка древесины сформировалась в новую область технологии, целями которой являются: повышение стойкости древесины против гниения, придание огнестойкости, улучшение физических свойств, повышение механических свойств, снижение анизотропии. В Северной Америке, Европе и Японии ежегодно растут объемы потребления за счет увеличения доли деревянного строительства из современных деревянных конструкций: панели из перекрестно-склеенной древесины, формирование стены за счет перекрещенной доски без клея, пиломатериалы из слоёного шпона – все это новейшие технологии в областях деревообработки и деревянных конструкций. Но исследования не стоят на месте – западными и российскими учеными предлагается улучшать характеристики данных конструкций с помощью высокопрочного углеродного волокна и углеродной ткани. В России таких исследований про-водиться мало в виду высокой стоимости данных материалов. Однако уже проведённые исследования и предварительные расчеты автора говорят о достаточной экономии за счет сокращения расхода древесины при условии применения данных материалов, а также за счет применения древесины 2–3 сорта.

Ключевые слова:
древесина, конструкционные материалы, модифицирование древесины, углеродное волокно, углеродная ткань, улучшение свойств древесины, деревянные конструкции
Текст
Текст (PDF): Читать Скачать

Введение. В России произрастает около
20 % древесины всего мира, но огромный лесосырьевой потенциал используется неэффективно. Лесная промышленность представлена достаточно скромно и экономике РФ приносит минимальные доходы. На сегодняшний день есть поручения правительства по развитию этого направления, рассматривается вопрос предоставления льготных кредитов как для физических, так и для юридических лиц как на строительство, так и на приобретение квартир в деревянных домах. Деревянное строительство достаточно широко развито в Европе, США и Японии. Ежегодно его доля в Европе увеличивается в среднем 20 %. В Евросоюзе активно продвигается государственная программа «Деревянная Европа», в соответствии с положениями которой уже к 2020 году объем строительства зданий из дерева должен достигнуть 80 % от общего количества новостроек, и в настоящее время этот показатель приближается к планируемому.

В России этот вид строительства развивается недостаточно активно и на это влияет ряд причин: несовершенство нормативной базы; неразвитая технология; недостаток информации о достоинствах деревянных конструкций и зданий из них [8]. В нашей стране деревянное домостроение представлено в основном в секторе малоэтажного жилья.

Основная часть. Современные деревянные конструкции могут использоваться практически в любых отраслях строительства, наряду с такими распространенными материалами, как металл, железобетон и композиты. Благодаря ряду преимуществ лишь дерево может применяться на определенных объектах: например, особые акустические свойства древесины широко используются при возведении концертных и экспозиционных залов, студий, спортивных сооружений с большим количеством зрителей, а устойчивость к воздействию влаги и отсутствие коррозии позволяет применять большепролетные конструкции из дерева в качестве покрытий бассейнов и аквапарков. Работа с деревом менее энерго- и трудоемка за счет применения простых инструментов и оборудования, кранов меньшей грузоподъемности. При этом монтаж деревянных конструкций отличается высокой технологичностью и скоростью, так как используются в большинстве своем блоки и модули заводской сборки. Деревянные здания отвечают современным нормам «зеленого» энергоэффективного строительства. Они могут возводиться на территориях со сложными инженерно-геологическими условиями (в том числе – с сейсмической активностью), с наличием горных подработок и свойств просадочности.

Однако наличие таких неоспоримо положительных свойств древесины не обеспечило ей широкое применение в строительстве как, например, стали или железобетону. Анизотропия, ползучесть, зависимость ее свойств от влажности, неоднородность строения, пороки, подверженность загниванию, горению и поражению насекомыми – все эти недостатки не позволяют ей занять лидирующие позиции в строительстве и конструировании зданий и сооружений. Попытки устранить эти недостатки древесины известны с самых древнейших времен. Её вываривали в масле, красили, пропитывали антисептиками и полимерами, красили с использованием ультразвука и электродиффузии, покрывали влаго- и воздухонепроницаемой плёнкой, создавали и создают композиционные материалы из дерева, но все это не давало желаемого эффекта. Развитие науки и техники, особенно в течение последних 20–30 лет, позволило расширить область применения древесины, а работы в этой области получили настолько большой размах, что обработка древесины сформировалась в новую область технологии, целями которой являются: повышение стойкости древесины против гниения, придание огнестойкости, улучшение физических свойств (например, снижение гигроскопичности, усушки и разбухания), повышение механических свойств, снижение анизотропии.

Одним из результатов тысячелетних экспериментов, стало модифицирование древесины – изменение свойств древесины. До недавнего времени, [согласно ГОСТ 23944-80] выделялось пять основных методов модифицирования древесины:

  • Древесина термомеханической модификации;
  • Древесина химико-механической модификации;
  • Древесина термохимической модификации;
  • Древесина радиационно-химической модификации;
  • Древесина химической модификации.

Однако на рубеже прошлого и нынешнего столетия был разработан новый продукт – термодревесина. Начало изучения метода термической обработки древесины было положено в 30 - 40-е годы XX века учеными в Германии и в США. Эти страны пытались разработать технологию термообработки древесины, которую можно было бы применить в производстве. Технология заключалась в высокотемпературной сушке при температурах 100–150 °C, однако работы по дальнейшему изучению свойств были приостановлены в связи с войной и возникшими послевоенными экономическими неурядицами. В 90-х к этой теме вновь вернулись, тогда уже в нескольких странах (Финляндии, Франции, Нидерландах, Италии, Германии) были проведены многочисленные исследования в области термообработки дерева. В результате проведенных исследований выяснилось, что воздействие на древесину пара высокой температуры приводит к необратимым изменениям её биологического состава на молекулярном уровне, что в разы улучшает ее свойства и эксплуатационные характеристики, в результате чего значительно расширяется сфера её применения. Страной-основоположницей промышленного выпуска термодревесины была Финляндия, до настоящего времени эта страна является признанным лидером в производстве и в исследованиях в этой области. В 1997 году в Финляндии на деревообрабатывающем заводе в г. Миккели внедрили новую технологию, которая и получила название термообработка, этот метод позволяет сушить древесину при температурах 150–230 °C, в результате которого страна заняла лидирующие позиции в производстве термодревесины. Сегодня в Европе более десятка запатентованных процессов термообработки древесины, появились деревообрабатывающие заводы в Германии, Франции, Австрии, Нидерландах и России. В 2004 году запрет Еврокомиссией (высшим органом исполнительной власти Евросоюза) на применения химически обработанного дерева на территории стран ЕС дал дополнительный толчок к производству термодревесины в Европе и ее производство резко возросло. Во всем мире функционирует примерно 30-40 производственных площадок по производству термодерева, из них половина – в Финляндии (75 тыс. куб. м.). Объем российского рынка термодерева приблизился к 8 тыс. куб. м.

Однако, идеального материала без недостатков еще придумать не удалось. Поэтому даже у такого, на первый взгляд, безукоризненного материала, есть недостатки. В результате термической обработки лесоматериалы становятся не только более твердыми, но и более хрупкими, по этой причине специалисты советуют сверлить направляющие отверстия для шурупов и гвоздей, в особенности около торцов доски. Термодревесина более чувствительна к ультрафиолету и может приобретать серебристо-серый оттенок, раз в несколько лет участки древесины, расположенные под открытым солнцем, понадобится обрабатывать. Поскольку технология является новой и малоизученной, экспертам пока не известна стойкость этого материала, при длительном нахождении в земле. Сегодня этот материал можно купить лишь в специализированных магазинах, в розничной продаже она встречается достаточно редко. Однако в ближайшие несколько лет стоит ждать большей доступности вследствие роста объемов производства и, как следствие, уменьшения стоимости, потому что все больше и больше производств начинают осваивать эту технологию.

Следующим этапом модифицирования древесины является изготовление CLT-панели (Cross Laminated Timber, в переводе на русский означающий – перекрестно-склеенной древесины). Идея создания панелей принадлежит Швейцарии: в начале 90-х несколько компаний из Лозанны и Цюриха начали производство панелей для своих строительных проектов. Уже в середине 90-х годов Австрийская ассоциация деревянной промышленности начала проводить научные исследования, которые и развили технологии модификации древесины, которое получила название "CLT-технология". В начале 2000-х строительство из CLT – панелей значительно выросло, что частично было связано с ростом популярности экологически чистого жилья и гуманизации городского пространства, а также повышением требований строительных норм многих европейских государств к энергоэффективности. Важным фактором, является то, что CLT – панели, хотя и создаются из дерева, но являются тяжелыми конструкциями, именно это и позволяет возводить многоэтажные здания именно из CLT – панелей. Разработанная в Европе CLT-технология набирает популярность как в жилом, так и в нежилом строительстве их изготавливают в Европе уже более 10 лет. Панель состоит из нечетного количества слоев строганных досок, влажностью 12 % и толщиной 30 мм, количество которых (от 3 до 9) зависит от назначения панелей, склеенных крест-накрест в пакет. Размеры плит как правило, составляют ширина 0,6; 1,2 или 2,95 м (до 4 м), длина может достигать 24 м, а толщина от 57 мм 500 мм. Для проклейки слоев используют экологичные меламиновые или полиуретановые клеи. Благодаря проклейке в прессе под высоким давлением характеристики усадки древесины сокращаются до минимума, а панели приобретают свойства монолита и не уступают в несущей способности даже железобетону. В дополнение о достоинствах CLT - панелей можно добавить: высокая огнестойкость, сейсмостойкость, отсутствие в необходимости устройства дополнительной звуко- и теплоизоляции, возможность монтажа «с колес» и отсутствие требований к высокой квалификации рабочих, т.к. комплекты домов заводской готовности, состоящие из крупных панелей, собираются на стройплощадке. Недостатки у CLT – панелей практически отсутствуют, но некоторые потребители указывают на то, что наличие в панели даже небольшого количества экологически чистого полиуретанового клея, мешает «дышать» панели.

В России ряд заводов уже освоил производство CLT – панелей, но пока рынок не развит, ввиду «особого» отношения россиян к дереву, конкуренции с клееным брусом, а также отсутствия регламентов нормативной базы. В 2017 году глава Минпромторга предложил развивать в России строительство деревянных домов, в том числе выше трех этажей, эту идею также продвигает Минстрой РФ. Предполагается ввести квоту на строительство деревянных зданий, а также выдавать льготные кредиты на такое строительство. Мэр Москвы также поддержал идею строительства деревянных домов в качестве эксперимента. В результате их совместных усилий и холдинга Segezha Group АФК «Система» был разработан эскизный проект деревянного квартала Wood City, который был представлен на Российском инвестиционном форуме в Сочи. По словам вице-президента, Segezha Group Дмитрия Руденко [7], архитектурную концепцию комплекса разработало бюро Тотана Кузембаева, площадка выбрана в районе ул. Мантулинской, площадь застройки составляет 39 тыс. кв. м, общая площадь зданий – 79,2 тыс. кв. м, жилая – 45 тыс. кв. м. Квартал рассчитан на проживание 2,5 тыс. человек (в расчете по 18 кв. м на человека). Сейчас в этом районе располагаются старые панельные пятиэтажки. Проектом предполагается их частичная модернизация. Часть квартала будет застроена по комбинированной конструктивной схеме (CLT-панели плюс бетон), включая многоуровневый паркинг. Однако в основном планируется использовать панельную (CLT), каркасно-панельную (клееная балка плюс CLT), модульную (блок-комнаты CLT) и панельно-модульную (CLT) технологии возведения зданий. Данный проект – это показатель развития технологий деревянного домостроения, благодаря которым появляются все больше многоэтажных деревянных зданий во всем мире и в России в том числе. Такие здания, а теперь уже и целые кварталы – это формирование высоких показателей качества городской среды.

Следующая новейшая технологии домостроения, отвечающая современным требованиям отрасли, получившей некоторое распространение и в России, является технология MHM (Massiv-Holz-Mauer) – формирование стены за счет перекрещенной доски без клея. Эта технология была разработана в Германии и исключает применение химически агрессивных составов для обработки древесины в связи с действием введённого в 1997 г. в стране стандарта DIN 68800. Панель состоит из досок 3-4 сорта, толщиной 23-24 миллиметра и произвольной ширины, влажностью 12 %, крестообразно соединенных друг с другом с помощью алюминиевых гвоздей. Количество слоев, зависит от места расположения панели в объеме здания и должно составлять согласно технологии нечетное количество. В результате толщина панелей может составлять от 5 до 15 слоев, что составляет от 115 мм до 340 мм. Сбитая панель проходит обработку на станках с ЧПУ, среди которых фрезеровка торцов панели по контуру, опиливание по требуемому формату, а затем формирование оконных и дверных проемов, и технологических отверстий под инженерные сети. Благодаря крестообразной конструкции сухих досок, стена не подвержена усадке и усушке, и ее форма остается стабильной [5]. Согласно [2] наружная и внутренняя облицовка позволяет достичь уровня шумоизоляции, соответствующего 48 дБ, теплоизоляция стены MHM толщиной 340 мм с внешней и внутренней облицовкой на 17 % лучше теплоизоляции оштукатуренной с двух сторон кирпичной стены толщиной 365 мм, а минимально допустимое время потери стенами несущей способности при пожаре составляет 30 минут. Однако несмотря на однозначную экологичность и безвредность для человека в результате применения только древесины и алюминиевых гвоздей, есть у таких панелей и незначительный недостаток: именно гвозди создают экранирующее воздействие на ослабление как радиационного фона, так и сотовой и теле-радио трансляций, в результате которого у жителей таких домов могут возникать проблемы со связью [3].

Одним из самых востребованных видов продукции является LVL-брус (от англ. Laminated Veneer Lumber – «пиломатериал из слоёного шпона»). Его производство – перспективное направление: спрос на LVL растёт как за границей, так и в России. Потребление LVL в Европе (ЕС) выросло за последние пять лет на 21 %, а в США и Канаде, где на долю каркасных домов в общем объеме строительства малоэтажного жилья приходится до 90 %, потребление к 2018 году ожидается прирост до 3,2 млн м3. В США и странах Западной Европы материалы, заменяющие натуральную древесину и экономящие древесное сырье, получили название EWP (Engineered wood products) – конструкционные древесные материалы. Среди них выделяют несколько групп. Одна из них – группа структурированных строительных композиционных материалов, Structural composite lumber (SCL). Все члены этой группы являются прочными и в некоторых случаях взаимозаменяемы

В эту группу входят:

PSL (parallel strand lumber); PSL – изготовлен из полосок шпона, уложенных параллельно продольной оси бруса или плиты, с использованием водостойких клеев. Отношение длины к толщине этих полосок для PSL составляет примерно 300. PSL используется для балок перекрытий и для изготовления элементов строительных конструкций, с низкими характеристиками на изгибающий момент, а также часто используют для изготовления несущих колонн.

LSL (laminated strand lumber); LSL – древесные частицы, из которых формируется ковер, имеют отношение длины к толщине приблизительно 150, получают путем прессования сформированного ковра в горячих прессах. LSL используется в производстве различных столярных изделий (рамы, обвязка и полотна дверных блоков и т. д.).

LVL (laminated veneer lumber); LVL – многослойный материал, из шпона, склеенного в одном направлении. Отличается от фанеры преимущественно продольным расположением волокон древесины в слоях шпона, склеенных на пласть, что повышает прочность конструкций из такого материала до значений прочности древесины при растяжении вдоль волокон и обеспечивает максимальное снижение влияния ее пороков на механические свойства материала. Технические характеристики, а также большие размеры определили перспективность этого материала для строительства.

ЛВЛ – брус был разработан в 1935 году в лаборатории Федерального Лесничества США, а само понятие ЛВЛ было введено в 1960-е гг. компанией Wayerhauser (США), где и была установлена линия по производству ЛВЛ бруса. Технология LVL-бруса основана на склейки нескольких слоёв (от 3 до 9) лущёного шпона древесины сосны, ели и лиственницы, толщиной 3 мм. Выпускается в виде брусьев (балок) и плит, длиной до 20500 мм, шириной от 64 до 1250 мм, толщиной от 27 до 90 мм. В виду высокой прочности на горизонтальные нагрузки брус ЛВЛ чаще всего применяют в несущих элементах каркаса. А благодаря тому, что длина балки практически не ограничена, то конструкции из ЛВЛ-бруса можно проектировать и возводить больших пролётов (до 36 м) и объёмов. В виду отсутствия пористости (т.к. материал клееный), то такие конструкции можно применять в зданиях с агрессивной средой (сельскохозяйственные здания, склады химических реагентов и т.д.), и в помещениях с повышенной влажностью (бассейны). ЛВЛ-брус используют и в системах силовой опалубки.

Большой набор достоинств этого материала, обеспечивает ему широкое распространение и дальнейшие перспективы:

  • широкий диапазон размеров;
  • влагостойкость и стойкость к воздействию агрессивных сред обеспечивает его широкое применение в независимости от особенностей климата и назначения здания;
  • высокая способность сохранять свои линейные размеры с течением времени (не коробится, минимальные показатели усушки);
  • большие перекрываемые пролеты, вследствие высоких показателей на изгибающий момент и растяжение вдоль волокон;
  • по сравнению с традиционными строительными материалами (бетон, кирпич, металл) LVL имеет оптимальное соотношение удельного веса к прочности вдоль волокон, что особенно важно для малоэтажного строительства, где в результате применения конструкций из LVL не потребуется усиленного фундамента;
  • высокая огнестойкость и стойкость к биоповреждениям, скорость обугливания конструкций из в горизонтальном направлении составляет 0,6 мм/мин и 1 мм/мин в высоту [4];
  • обладает высокими акустическими свойствами, что позволяет возводить и реконструировать здания с высокими акустическими характеристиками;
  • быстрый монтаж на строительной площадке без тяжелой техники, что значительно удешевляет работы.

Большое количество достоинств не обеспечивает этому материалу отсутствие недостатков:

  • брус токсичен, поскольку для склеивания шпона используются жидкие фенолоформальдегидные клеи, обеспечивающие выделение вредных веществ;
  • Присутствие большого количества клея обеспечило ЛВЛ-брусу паронепроницаемость, что может привести к нарушениям естественной циркуляции влаги в материале.

Материалы CLT и LVL могут комбинироваться друг с другом [6]. Например, каркас здания может состоять из LVL бруса, а стены и перекрытия – из панелей CLT. Существуют также гибридные варианты строительства, когда основные элементы каркаса монтируются из железобетона, а ограждающие конструкции и второстепенные балки – из композиционной древесины. Причинами такого подхода могут являться, в том числе жесткие требования пожарной безопасности.

Дерево – это возобновляемый природный ресурс, из которого изготавливают современные композитные материалы, отличающиеся высокой прочностью и долговечностью. При этом для производства высокотехнологичных стройматериалов, в частности панелей и бруса, может использоваться низкосортная древесина, щепа и отходы. Производство и обработка строительных конструкций из древесины, равно как их транспортировка и монтаж обходятся дешевле в сравнении со стальными и железобетонными аналогами. Как показал анализ исследований, проведенных за последние 10–20 лет авторов [1, 9, 10, 11, 12, 13, 14, 15] наиболее перспективным материалом для усиления свойств деревянных конструкций и композиционных строительных материалов является углеродное волокно и углепластики, имеющие ряд достоинств: высокая удельная прочность, стойкость к коррозии, низкая тепло и электропроводность, а также это экологичность – они не токсичны. Усиление деревянных конструкций выполняют либо вклеиванием стержней под различными углами к конструкции, либо слоями, между склеиваемыми слоями досок, шпона, либо смешивания со стружечно-клеевой массой, либо путем внешнего армирования. По данным [10] при экспериментальных исследованиях моделей деревянных балок, армированных углепластиками, наблюдалось увеличение несущей способности в пределах 21…79 %. Однако несмотря на указанные преимущества, углепластики в деревянных конструкциях в РФ применяются редко в виду недостаточной изученности композитных конструкций, отсутствие широкой нормативной базы по их применению и проектированию, а также стоимость изготовления таких конструкций [10].

Выводы. В виду того, что на современном этапе, появляются все более современные, более качественные и сравнительно доступные материалы в последующих исследованиях планируется более подробно изучить вопрос повышения прочности и деформативности клееных балок; балок, изготовленных с использованием ЛВЛ-бруса и и CLT-панелей, усиленных углеродными волокнами или углеродной тканью. Цель исследований – изучить совместную работу углеволокна и древесины, определить возможно ли применение древесины третьего сорта в таких конструкциях и выявить необходимость и возможность применения таких конструкций.

Результаты предварительного анализа показали, что при условии применения углеродных волокон для усиления работы балок поперечное сечение конструкции можно сократить до 10–
20 %

Экономия достигается за счет сокращения расхода древесины при условии послойного армирования, а также за счет применения древесины 2–3 сорта.

Для определения более точных показателей необходимо провести исследования количественного и качественного расположения углеродного волокна в теле балки и сравнить прочностные характеристики усиленных различными способами балок и склеенных различными видами клеев.

Список литературы

1. Водянников М.А., Кашеварова Г.Г. Анализ возможностей совместного примене-ния углепластиков и клееной древесины, ра-ботающих в агрессивной среде // Материалы VIII Всероссийской молодежной конференции аспирантов, молодых ученых и студентов Со-временные технологии в строительстве. Тео-рия и практика. Пермь: ПНИПУ, 2016. Т1. С. 62-70.

2. Воякин А.С. МНМ панели завоевывают рынок // Лесная индустрия. 2010. №4. С. 38-40.

3. Воякин А.С. Деревянная альтернатива бетону // Лесная индустрия. 2013. №4. С. 38-45.

4. Воякин А.С. Технология изготовления бруса LVL // Лесная индустрия. 2014. №7-8. С. 42-49.

5. Дмитриева О.П. Развитие малоэтажно-го жилищного строительства в г. Красноярске на основе технологии Massiv-Holz-Mauer [Электронный ресурс] // СФУ Тезисы I-ой международной конференции студентов, ма-гистрантов, аспирантов и молодых ученых «Инновационные технологии строительства». 2011г. URL:http://conf.sfu-kras.ru/sites/mn2011/thesis/s4/s4_139.pdf (20.02.2018)

6. Крестьянникова А.Ю., Юминова М.О. Материалы и конструкции для строительства деревянных домов // Наука через призму вре-мени. 2017. №9. С. 42-51.

7. Карабут Татьяна Рядом с «Москва-Сити» появится деревянный квартал [Элек-тронный ресурс]// URL:https://www.radidomapro.ru/ryedktzij/green/green/riadom-s-moskva-siti-poiavitsia-dereviannyj-kvar-63210.php (16.02.2018)

8. Михалева С.А. Деревянные высотки в России - инновационный взгляд не современ-ное строительство // Архитектура. 2016. №4(46). Ч. 7. С. 19-21

9. Стоянов В.В., Жгалли С. Повышение несущей способности деревянных изгибае-мых элементов // Лесной журнал. 2016. №1. С. 115-121.

10. Уточкина Е.С., Крицин А.В. Внешнее армирование несущих деревянных конструкций углеродной лентой // Современ-ные наукоемкие технологии. 2013. №8. С. 294-296.

11. Constantin Brancusi On the role of CFRP reinforcement for wood beams stiff-ness // IOP Conference Series: Materials Science and Engineering, Vol. 95. Issue 1. 2015.

12. Fossetti M., Minafo G., Papia M. Flexural behavior of glulam timber beams rein-forced with FRP cords // Journal Construction and Building Materials. 2015. Vol. 95. Pp. 54-64.

13. Nowak T.P., Jasienko J., Czepizak D. Experimental tests and numerical analysis of historic bent timber elements rein-forced with CFRP strips. Journal Construction and Building Materials. 2013. Vol. 40. Pp. 197-206.

14. Shahnewaz M., Islam M.S., Tan-nert T., Alam M.S. Reinforced wood I-joists with web opening: Experimental and Analytical inves-tigations. Conference Paper, WCTE 2016-Worl Conference on Timber Engineering. 2017. Vol. 143. Issue 6.

15. Thorhallsson E.R., Hinriksson G.I., Shaebjörnsson J.T. Strength and stiffness of glulam beams reinforced with glass and basalt fibres. - Composites Part B: Engineering. 19 Au-gust 2016.


Войти или Создать
* Забыли пароль?