Аннотация и ключевые слова
Аннотация (русский):
Since 2015, simultaneous observations of temperature of the high-latitude mesopause (87 km) have been made at Maimaga (63.04° N, 129.51° E) and Tiksi (71.58° N, 128.77° E) stations. These stations record spectra with Shamrock (Andor) photosensitive infrared spectrographs detecting the OH (3, 1) band in the near-infrared region (about 1.5 μm). We analyze temperature data obtained in observation seasons from 2015 to 2017. Standard deviations of temperature σ from its mean values are taken as characteristics of wave activity at night. We have obtained standard temperature deviations corresponding to internal gravity waves (IGW) (σgw) and tidal waves (σtd). Mean night rotational temperatures of hydroxyl emission almost coincide, and seasonal variations of gravity and tidal waves have a similar form during two seasons of simultaneous observations at Tiksi and Maimaga.

Ключевые слова:
high-latitude mesopause, hydroxyl emission, internal gravity waves, tidal waves
Текст произведения (PDF): Читать Скачать
Список литературы

1. Ammosov P.P., Gavrilyeva G.A. Infrared Digital Spectrograph for Measuring Hydroxyl Rotational Temperature. Prib. Tekh. Eksp. 2000, vol. 43, no. 6, pp. 792–797.

2. Baker D.J., Stair A.T. Rocket measurements of the altitude distributions of the hydroxyl airglow. Physica Scripta. 1988, vol. 37, pp. 611–622.

3. Brasseur G., Solomon S. Aeronomiya srednei atmosfery [Aeronomy of the middle atmosphere]. Leningrad, Gidrometeoizdat Publ., 1987. 413 p. (In Russian).

4. Chapman S., Lindzen R. Atmosfernye prilivy [Atmospheric tides]. Moscow, Mir Publ., 1972. 295 p. (In Russian).

5. Gavrilyeva G.A., Ammosov P.P. Seasonal variation in the mesopause temperature over Yakutsk (63° N, 129.5° E). Geomagnetism and Aeronomy. 2002, vol. 42, no. 2, pp. 267–271.

6. Goldman A., Schoenfeld W. G., Goorvitch D., Chackerian Jr.C., Dothe H., Mélen F., Abrams M.C., Selby J.E. A. Updated line parameters for OH X2П-X2П (v″, vʹ) transitions. J. Quantitative Spectroscopy and Radiative Transfer. 1998, vol. 59, pp. 453–469.

7. Hines C.O. The upper atmosphere in motion. AGU. Washington D.C., 1974. 1027 p.

8. Mies F.H. Calculated vibrational transition probabilities of OH(X2Π). J. Molecular Spectroscopy. 1974, vol. 53, no. 2, pp. 150–180.

9. Noll S., Kausch W., Kimeswenger S., Unterguggenberger S., Jones A. M. OH populations and temperatures from simultaneous spectroscopic observations of 25 bands. Atmospheric Chemistry and Physics. 2015, vol. 15, pp. 3647–3669.

10. Offermann D., Gusev O., Donner M., Forbes J.M., Hagan M., Mlynczak M.G., Oberheide J., Preusse P., Schmidt H., Russell J.M. III. Relative intensities of middle atmosphere waves. J. Geo-phys. Res. 2009, vol. 114, p. D06110.

11. Offermann D., Hoffmann P., Knieling P., Koppmann R., Oberheide J. Long‐term trends and solar cycle variations of mesospheric temperature and dynamics. J. Geophys. Res. 2010, vol. 115, p. D18127.

12. Offermann D., Wintel J., Kalicinsky C., Knieling P., Koppmann R., Steinbrecht W. Long‐term development of short‐period gravity waves in middle Europe. J. Geophys. Res. 2011, vol. 116, p. D00P07.

13. Perminov V.I., Medvedeva I.V., Semenov A.I. Temperature variability in the mesopause region from midlatitude measurements of the hydroxyl emission. Sovremennye problemy distantsionnogo zondirovaniya Zermli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2013, vol. 10, no. 1, pp. 134–141. (In Russian).

14. Perminov V.I., Semenov A.I., Medvedeva I.V., Pertsev N.N. Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes. Geomagnetism and Aeronomy. 2014, vol. 54, no. 2, pp. 230–239.

15. Shefov N.N., Semenov A.I., Khomich V.Yu. Izuchenie verkhnei atmosfery — indikator ee struktury i dinamiki [Research into the upper atmosphere as an indicator of its structure and dynamics]. Moscow, GEOS Publ., 2006. 741 p. (In Russian).

16. Takano M., Watanabe T., Nakamura M. Rocket measurements of O2 atmospheric (0-0) and OH Meinel bands in the night airglow. J. Geomagn. Geoelectr. 1990, vol. 42, pp. 1193–1208.

17. van der Loo M.P.J., Groenenboom G.C. Theoretical transition probabilities for the OH Meinel system. J. Chem. Phys. 2007, vol. 126, p. 114314.

18. Yee J.H., Growley G., Roble R.G., Skinner W.R., Burrage M.D., Hays P.B. Global simulations and observations of OI (1S), O2 (1Σ), and OH mesospheric nightglow emissions. J. Geophys. Res. 1997, vol. 102, pp. 19949–19968.

19. Zhang S.P., Shepherd G.G. The influence of the diurnal tide on the O(1S) and OH emission rates observed by WINDII on UARS. Geophys. Res. Lett. 1999, vol. 26, p. 529.

Войти или Создать
* Забыли пароль?