Lactic acid bacteria (LAB) dominate the spoilage populations of vacuum-packaged emulsion-type sausages and other processed meats stored at refrigeration temperatures. An experimental investigation was carried out to evaluate the effectiveness of two in-package pasteurization treatments to prevent microbial spoilage in emulsion vacuum packaged sausages during refrigerated storage. D-values at 60 and 68°C for two isolated dominant LAB ( Lactobacillus sakei and Lactobacillus plantarum ) were determined in vitro and thermal treatments aimed to achieve a 4 log reduction in LAB. Sixty three sausage packs were divided into 3 groups: untreated packs (Control), treated at 60°C for 120 s (PAST 1) and treated at 68°C for 12 s (PAST 2). Microbial composition, pH values and sensorial changes were monitored in two-week intervals. In-package pasteurization resulted in an immediate 3.5-4.2 log CFU/g reduction in the population of LAB in PAST 1 and PAST 2 and remained at an acceptable level to the end of the experiment. On the contrary, during 84 days of cold storage, the LAB count increased significantly in the control samples and reached 9 log CFU/g. The control samples were also considered as unacceptable spoiled products after 28 days by sensorial aspects. All the pasteurized treatments also resulted resulted a significant (p < 0.05) reduction of psychrotrophic and the total mesophilic bacteria compared to the control ones. The data obtained showed that in both pasteurized groups none of the sensorial parameters were rated higher than the consumer-rejection threshold within 84 days of the study. No significant (p > 0.05) differences were observed in the number of spores, yeasts and molds between the pasteurized and control samples. It has been concluded that in-package pasteurization is an effective method without undesirable effects to prevent the spoilage caused by LAB growth and extend the emulsion vacuum packaged sausages shelf life to more than 3 months.
In-package pasteurization, LAB, spoilage, shelf life
1. Perez-chabela M.D.L., Totosaus A., and Gurrero I. Evaluation of thermotolerant capacity of lactic acid bacteria isolated from commercial sausages and the effects of their addition on the quality of cooked sausages. Ciencia e Tecnologia de Alimentos, 2008, vol. 28, no. 1, pp. 132-138. DOI:https://doi.org/10.1590/S0101-20612008000100019.
2. Miranda J.M., Samuel A., Nebot C.G., et al. Technological characterization of lactic acid bacteria isolated from beef stored on vacuum-packaged and advanced vacuum skin packaged system. Journal of Food Processing & Technology, 2014, vol. 5, no. 6, p. 338. DOI:https://doi.org/10.4172/2157-7110.1000338.
3. Diez A.M., Björkroth J., Jaime I., and Rovira J. Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides. International Journal of Food Microbiology, 2009, vol. 131, no. 2-3, pp. 168-177. DOI:https://doi.org/10.1016/j.ijfoodmicro.2009.02.019.
4. Nerbrink E. and Borch E. Evaluation of bacterial contamination at separate processing stages in emulsion sausage production. International Journal of Food Microbiology, 1993, vol. 20, no. 1, pp. 37-44. DOI:https://doi.org/10.1016/0168-1605(93)90058-O.
5. Gande N. and Muriana P. Prepackage Surface Pasteurization of Ready-to-Eat Meats with a Radiant Heat Oven for Reduction of Listeria monocytogenes. Journal of Food Protection, 2003, vol. 66, no. 9, pp. 1623-1630.
6. Murphy R.Y., Duncan L.K., Johnson E.R., Davis M.D., and Smith J.N. Thermal inactivation D- and z-Values of Salmonella Serotypes and Listeria innocua in chicken patties, chicken tenders, franks, beef patties, and blended beef and turkey patties. Journal of Food Protection, 2002, vol. 65, no. 1, pp. 53-60. DOI:https://doi.org/10.4315/0362-028X-65.1.53.
7. Franz C.M.A.P. and von Holy A. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged Vienna sausages. International Journal of Food Microbiology, 1996, vol. 29, no. 1, pp. 59-73. DOI:https://doi.org/10.1016/0168-1605(95)00022-4.
8. Jafarpour D., Shekarforoush S.S., Eskandari M.H., Niakosari M., and Hosseini A. Antifungal activity of native lactic acid bacteria strains isolated from the natural environments against fungi contaminating Iraninan white cheeses. BMC Microbiology, 2017. (Under Review).
9. Juneja V.K., Bari M.L., Inatsu Y., Kawamoto S., and Friedman M. Thermal Destruction of Escherichia coli O157:H7 in Sous-Vide Cooked Ground Beef as Affected by Tea Leaf and Apple Skin Powders. Journal of Food Protection, 2009, vol. 72, no. 4, pp. 860-865.
10. Beuchat L.R. Media for detecting and enumerating yeasts and moulds. International Journal of Food Microbiology, 1992, vol. 17, no. 2, pp. 145-158. DOI:https://doi.org/10.1016/0168-1605(92)90112-G.
11. Diez A.M., Santos E.M., Jaime I., and Rovira J. Application of organic acid salts and high-pressure treatments to improve the preservation of blood sausage. Food Microbiology, 2008, vol. 25, no. 1, pp. 154-161.
12. Borch E., Kant-Muemans M.L., and Blixt Y. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, 1996, vol. 33, no. 1, pp. 103-120. DOI:https://doi.org/10.1016/0168-1605(96)01135-X.
13. Santos E.M., Diez A.M., González-Fernández C., Jaime I., and Rovira J. Microbiological and sensory changes in “morcilla de Burgos” preserved in air, vacuum and modified atmosphere packaging. Meat Science, 2005, vol. 71, no. 2, pp. 249-255. DOI:https://doi.org/10.1016/j.meatsci.2005.03.028.
14. Korkeala H.J. and Björkroth K.J. Microbiological Spoilage and Contamination of Vacuum-Packaged Cooked Sausages. Journal of Food Protection, 1997, vol. 60, no. 6, pp. 724-737. DOI:https://doi.org/10.4315/0362-028X-60.6.724.
15. Blickstad E. and Molin G. The microbial flora of smoked pork loin and frankfurter sausage stored in different gas atmospheres at 4°C. Journal of Applied Bacteriology, 1983, vol. 54, no. 1, pp. 45-56. DOI:https://doi.org/10.1111/j.1365-2672.1983.tb01299.x.
16. Franz C.M.A.P., Dykes G.A., and von Holy A. Effect of in vitro pH and temperature changes on meat spoilage lactic acid bacteria. African Journal of Food Science, 1991, vol. 3, no. 1, pp. 59-62.
17. Hamasaki Y., Ayaki M., Fuchu H., Sugiyama M., and Morita H. Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Applied and Environmental Microbiology, 2003, vol. 69, no. 6, pp. 3668-3671. DOI:https://doi.org/10.1128/AEM.69.6.3668-3671.2003.
18. Björkroth K.J. and Korkeala H.J. Evaluation of Lactobacillus sake Contamination in Vacuum-Packaged Sliced Cooked Meat Products by Ribotyping. Journal of Food Protection, 1996, vol. 59, no. 4, pp. 398-401. DOI:https://doi.org/10.4315/0362-028X-59.4.398.
19. Zurera-Cosano G., Rincon-Leon F., Moreno-Rojas R., and Pozo-Lora R. Microbial growth in vacuum packaged frankfurters produced in Spain. Food Microbiology, 1998, vol. 5, no. 4, pp. 213-218. DOI:https://doi.org/10.1016/0740-0020(88)90020-2.
20. Von Holy A., Cloete T.E., and Holzapfel W.H. Quantification and characterization of microbial populations associated with spoiled, vacuum-packed Vienna sausages. Food Microbiology, 1991, vol. 8, no. 2, pp. 95-104. DOI:https://doi.org/10.1016/0740-0020(91)90002-J.
21. Santos E.M., Jaime I., Rovira J., et al. Characterization and identification of lactic acid bacteria in morcilla de Burgos. International Journal of Food Microbiology, 2005, vol. 97, no. 3, pp. 285-296. DOI:https://doi.org/10.1016/j.ijfoodmicro.2004.04.021.
22. Von Holy A., Meissner D., and Holzapfel W.H. Effects of pasteurization and storage temperature on vacuumpackaged Vienna sausage shelf-life. South African Journal of Science, 1991, vol. 87, pp. 387-390.