Иркутск, Иркутская область, Россия
Иркутск, Россия
Иркутск, Россия
This paper deals with Pc5 magnetospheric pulsations featuring positive azimuthal wave numbers registered with the mid-latitude coherent decameter radar located near Ekaterinburg (EKB). The azimuthal wave numbers are determined using adjacent high time resolution beams directed toward the magnetic pole. Approximately 13 % of all steady waves registered with the radar propagate eastward. We have examined ten cases of wave observations with both small and high positive wave numbers, which occurred between April 2014 and March 2015. We performed a wavelet analysis of the data sets, estimated wavelength in radial direction for four cases, and determined meridional phase propagation direction. In three cases, the results are consistent with field line resonance behavior. However, in the majority of the studied events wave frequencies are considerably lower than those of field line resonance, which were derived from satellite data on magnetic field and particle density. These waves may be classed with the drift-compressional mode.
ULF waves, radar, magnetosphere
1. Anderson B.J., Engebretson M.J., Rounds S.P., Zanetti L.J., Potemra T.A. A statistical study of Pc 3-5 pulsations observed by the AMPTE/CCE Magnetic Fields Experiment. 1. Occurrence distributions. J. Geophys. Res. 1990, vol. 95, iss. A7, pp. 10495-10523. DOI:https://doi.org/10.1029/JA095iA07p10495.
2. Baddeley L.J., Lorentzen D.A., Partamies N., Denig W., Pilipenko V.A., Oksavik K., Chen X., Zhang Y. Equatorward propagating auroral arcs driven by ULF wave activity: Multipoint ground and space based observations in the dusk sector auroral oval. J. Geophys. Res.: Space Phys. 2017, vol. 122, iss. 5, pp. 5591-5605. DOI:https://doi.org/10.1002/2016JA023427.
3. Berngardt O.I., Kutelev K.A., Kurkin V.I., Grkovich K.V., Yampolsky Y.M., Kashcheyev A.S., Kashcheyev S.B., Galushko V.G., Grigorieva S.A., Kusonsky O.A. Bistatic sounding of high-latitude ionospheric irregularities using a decameter EKB radar and an UTR-2 radio telescope: first results. Radiophysics and Quantum Electronics. 2015, vol. 58, iss. 6, pp. 390-408. DOI:https://doi.org/10.1007/s11141-015-9614-1.
4. Chelpanov M.A., Mager P.N., Klimushkin D.Yu., Berngardt O.I., Mager O.V. Experimental evidence of drift compressional waves in the magnetosphere: an Ekaterinburg coherent decameter radar case study. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 1315-1326. DOI:https://doi.org/10.1002/2015 JA022155.
5. Chelpanov M.A., Mager O.V., Mager P.N., Klimushkin D.Yu., Berngardt O.I. Properties of frequency distribution of Pc5-range pulsations observed with the Ekaterinburg decameter radar in the nightside ionosphere. J. Atmos. Solar-Terr. Phys. 2018, vol. 167, pp. 177-183. DOI:https://doi.org/10.1016/j.jastp.2017.12.002.
6. Chen L., Hasegawa A. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 1974, vol. 79, iss. 7, pp. 1024-1032. DOI:https://doi.org/10.1029/JA079 i007p01024.
7. Eriksson P.T.I., Blomberg L.G., Glassmeier K.-H. Cluster satellite observations of mHz pulsations in the dayside magnetosphere. Adv. Space Res. 2006, vol. 38, pp. 1730-1737. DOI:https://doi.org/10.1016/j.asr.2005.04.103.
8. Glassmeier K.-H., Buchert S., Motschmann U., Korth A., Pedersen A. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities. Ann. Geophys. 1999, vol. 17, pp. 338-350. DOI:https://doi.org/10.1007/s005 85-999-0338-4.
9. Hori T., Nishitani N., Shepherd S.G., Ruohoniemi J.M., Connors M., Teramoto M., et al. Substorm-associated ionospheric flow fluctuations during the 27 March 2017 magnetic storm: SuperDARN-Arase conjunction. Geophys. Res. Lett. 2018, vol. 45, iss. 18, pp. 9441-9449. DOI:https://doi.org/10.1029/2018GL079777.
10. James M.K., Yeoman T.K., Mager P.N., Klimushkin D.Y. The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res. Space Phys. 2013, vol. 118, pp. 1737-1749. DOI:https://doi.org/10.1002/jgra.50131.
11. Le G., Chi P.J., Strangeway R.J., Slavin J.A. Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites. J. Geophys. Res. 2011, vol. 116, A08203. DOI:https://doi.org/10.1029/2011JA016574.
12. Klimushkin D.Yu., Mager P.N., Glassmeier K.-H. Toroidal and poloidal Alfven waves with arbitrary azimuthal wave numbers in a finite pressure plasma in the Earth’s magnetosphere. Ann. Geophys. 2004, vol. 22, iss. 1, pp. 267-288. DOI:https://doi.org/10.5194/angeo-22-267-2004.
13. Kostarev D.V., Mager P.N. Drift-compression waves propagating in the direction of energetic electron drift in the magnetosphere. Solar-Terr. Phys. 2017, vol. 3, iss. 3, pp. 18-27. DOI:https://doi.org/10.12737/stp-33201703.
14. Leonovich A., Mazur V., Kozlov D. MHD-waves in the geomagnetic tail: A review. Solnechno-Zemnaуa Fizika [Solar-Terrestrial Physics], 2015, vol. 1, pp. 4-22. (In Russian). DOI:https://doi.org/10.12737/7168.
15. Mager P.N., Klimushkin D.Yu. Generation of Alfvén waves by a plasma inhomogeneity moving in the Earth’s magnetosphere. Plasma Physics Reports. 2007, vol. 33, no. 5, pp. 391-398. DOI:https://doi.org/10.1134/S1063780X07050042.
16. Mager P.N., Klimushkin D.Yu., Ivchenko N. On the equatorward phase propagation of high-m ULF pulsations observed by radars. J. Atmos. Solar-Terr. Phys. 2009, vol. 71, iss. 16, pp. 1677-1680. DOI:https://doi.org/10.1016/j.jastp.2008.09.001.
17. Mathews J.T., Mann I.R., Rae I.J., Moen J. Multi-instrument observations of ULF wave-driven discrete auroral arcs propagating sunward and equatorward from the poleward boundary of the duskside auroral oval. Phys. Plasmas. 2004, vol. 11, pp. 1250-1259. DOI:https://doi.org/10.1063/1.1647137.
18. Mazur V.A., Chuiko D.A. Excitation of the magnetospheric MHD resonator by Celvin-Helmholtz instability. Plasma Physics Rep. 2011, vol. 37, no. 11, p. 979.
19. Mazur V.A., Chuiko D.A. Kelvin-Helmholtz instability on the magnetopause, magnetohydrodynamic waveguide in the outer magnetosphere, and Alfvén resonance deep in the magnetosphere. Plasma Physics Rep. 2013, vol. 39, no. 6, pp. 488-503. DOI:https://doi.org/10.1134/S1063780X13060068.
20. Mazur V.A., Chuiko D.A. Energy flux in 2-D MHD waveguide in the outer magnetosphere. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 1946-1959. DOI: 10.1002/ 2016JA023632.
21. Rae I.J., Murphy K.R., Watt C.E.J., Rostoker G., Rankin R., Mann I.R., Hodgson C.R., Frey H.U., Degeling A.W., Forsyth C. Field line resonances as a trigger and a tracer for substorm onset. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 5343-5363. DOI:https://doi.org/10.1002/2013JA018889.
22. Southwood D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, vol. 22, iss. 3, pp. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.
23. Takahashi K., Lopez R.E., McEntire R.W., Zanetti L.J., Kistler L.M., Ipavich F.M. An eastward propagating compressional Pc5 wave observed by AMPTE/CCE in the postmidnight sector. J. Geophys. Res. 1987, vol. 92, iss. A12, pp. 13472-13484. DOI:https://doi.org/10.1029/JA092iA12p13472.
24. Tian M., Yeoman T., Lester M., Jones T. Statistics of Pc5 pulsation events observed by SABRE. Planet. Space Sci. 1991, vol. 39, iss. 9, pp. 1239-1247. DOI:https://doi.org/10.1016/0032-0633(91)90037-B.
25. Yeoman T., Tian M., Lester M., Jones T. A study of Pc5 hydromagnetic waves with equatorward phase propagation. Planet. Space Sci. 1992, vol. 40, iss. 6, pp. 797-810. DOI:https://doi.org/10.1016/0032-0633(92)90108-Z.
26. Yeoman T.K., Wright D.M., Chapman P.J., Stockton-Chalk A.B. High-latitude observations of ULF waves with large azimuthal wavenumbers. J. Geophys. Res. 2000, vol. 105, iss. A3, pp. 5453-5462. DOI:https://doi.org/10.1029/1999JA005081.
27. Yeoman T.K., James M., Mager P.N., Klimushkin D.Y. SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res. 2012, vol. 117, A06231. DOI:https://doi.org/10.1029/2012JA017668.
28. Walker A.D.M., Greenwald R.A., Stuart W.F., Green C.A. STARE auroral radar observations of Pc5 geomagnetic pulsations. J. Geophys. Res. 1979, vol. 84, iss. A7, pp. 3373-3388. DOI:https://doi.org/10.1029/JA084iA07p03373.
29. Zolotukhina N.A., Mager P.N., Klimushkin D.Yu. Pc5 waves generated by substorm injection: a case study. Ann. Geophys. 2008, vol. 26, pp. 2053-2059. DOI:https://doi.org/10.5194/angeo-26-2053-2008.
30. Zong Q., Rankin R., Zhou X. The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys. 2017, vol. 1, 10. DOI:https://doi.org/10.1007/s41614-017-0011-4.
31. URL: http://wdc.kugi.kyoto-u.ac.jp (accessed November 9, 2018).
32. URL: http://omniweb.gsfc.nasa.gov (accessed November 9, 2018).
33. URL: http://iszf.irk.ru (accessed November 9, 2018).
34. URL: http://cdaweb.gsfc.nasa.gov (accessed November 9, 2018).