сотрудник
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
сотрудник
сотрудник
сотрудник
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
сотрудник
Россия
ГРНТИ 76.03 Медико-биологические дисциплины
ГРНТИ 76.33 Гигиена и эпидемиология
ОКСО 14.04.02 Ядерные физика и технологии
ОКСО 31.06.2001 Клиническая медицина
ОКСО 31.08.08 Радиология
ОКСО 32.08.12 Эпидемиология
ББК 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
ББК 534 Общая диагностика
ТБК 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
ТБК 5712 Медицинская биология. Гистология
ТБК 5734 Медицинская радиология и рентгенология
ТБК 6212 Радиоактивные элементы и изотопы. Радиохимия
Цель: Провести сравнительную оценку влияния облучения мезенхимальных стволовых клеток (МСК) человека в сверхвысоких дозах при температуре жидкого азота (–196 °С) и комнатной температуре (22 °С) на выход остаточных двунитевых разрывов (ДР) ДНК и на пролиферативную активность размороженных МСК. Материал и методы: Выделение и культивирование МСК человека проводили по стандартной методике. Для криоконсервации клеток использовали диметилсульфоксид (ДМСО) в концентрации 10 %. Для облучения клеток тормозным фотонным излучением с номинальной энергией фотонов 5 МэВ использовали ускоритель УЭЛР-10-100-Т-100 (Россия). Клетки облучали в дозах 50 и 500 Гр при температуре +22 °С и –196 °С. Выход остаточных ДР ДНК оценивали с помощью иммуноцитохимического анализа фокусов белка-маркера ДР – γH2AX. Для оценки пролиферативной активности анализировали долю Ki67 (белок-маркер клеточной пролиферации) позитивных клеток. Результаты: Результаты оценки фокусов γH2AX в МСК через 48 ч после облучения в дозе 50 Гр показали, что количество остаточных фокусов γH2AX в ядрах МСК, облученных при температуре +22 °С, примерно в 3,2 раза (р = 0,0002) выше, чем в ядрах МСК, облученных при температуре –196 °С. Анализ пролиферативной активности клеток с использованием молекулярного маркера клеточной пролиферации белка Ki67 показал, что клетки, облученные в дозе 50 Гр при температуре +22 °С, полностью теряют способность к пролиферации. Пролиферативная активность клеток, облученных в той же дозе, но при температуре –196 °С, существенно снижается, но часть клеток (3,5±1,1 %) все же сохраняет способность к пролиферации. После облучения в дозе 500 Гр при –196 °С клетки полностью теряют способность к пролиферации, но частично сохраняют способность к адгезии. Интегральная флуоресценция конъюгированных с флуорохромом антител к γH2AX ядер МСК человека, облученных в дозе 500 Гр при температуре –196 °С, в 1,8 раза ниже, чем у ядер, облученных при температуре +22 °С. Заключение: Результаты проведенных исследований свидетельствуют о том, что криоконсервированные МСК, облученные при температуре жидкого азота (–196 °С) в среде для консервации, содержащей 10 % ДМСО, могут переносить воздействие ИИ в больших дозах (до 50 Гр). Однако при этом наблюдается довольно высокий выход остаточных ДР ДНК и очень низкая пролиферативная активность, что делает их непригодными в клинической практике. Представляется перспективным использование количественного анализа фокусов γH2AX для оценки поврежденности генома и функционального состояния клеток, облученных при температуре жидкого азота.
мезенхимальные стволовые клетки, криоконсервация, двунитевые разрывы ДНК, клеточная пролиферация, тормозное излучение, сверхвысокие дозы
Введение
Изучение эффектов воздействия ионизирующего излучения (ИИ) в криоконсервированных клетках, облученных при температуре жидкого азота (–196 °С), представляет интерес для понимания механизмов действия ИИ. При столь низкой температуре резко снижаются процессы диффузии молекул, что приводит к существенному увеличению времени жизни свободных радикалов [1, 2]. Свободные радикалы, образующиеся при радиолизе воды, оказываются пространственно «заперты» и не могут взаимодействовать с находящимися на расстоянии биологическими макромолекулами. Это дает уникальные возможности для детальных исследований механизмов прямого (поглощение энергии биологическими молекулами-мишенями) действия ИИ. С другой стороны, современные технологии криоконсервации позволяют хранить соматические и половые клетки в течение десятилетий. Футурологи обсуждают возможность хранения криоконсервированных клеток в течение сотен лет и даже тысячелетий для полетов к другим звездным системам. При этом возникает вопросы: какие максимальные дозы ИИ выдерживают криоконсервированные клетки, и к каким эффектам приводит их облучение в больших дозах? Особый интерес для понимания механизмов повреждаемости криоконсервированных облученных клеток вызывают особенности образования критических радиационно-индуцированных повреждений ДНК – двунитевых разрывов (ДР). К сожалению, в открытой литературе отсутствуют данные как о количественном выходе ДР ДНК в клетках, облученных при температуре жидкого азота, так и об эффективности репарации этих повреждений после разморозки клеток.
1. Pezeshk A. The effects of ionizing radiation on DNA: the role of thiols as radioprotectors. Life sciences. 2004 Mar 26;74(19):2423-9. PubMed PMID: 14998719.
2. Ashwood-Smith MJ, Friedmann GB. Lethal and chromosomal effects of freezing, thawing, storage time, and x-irradiation on mammalian cells preserved at -196 degrees in dimethyl sulfoxide. Cryobiology. 1979 Apr;16(2):132-40. PubMed PMID: 573193.
3. Pustovalova M, Astrelina T, Grekhova A, Vorobyeva N, Tsvetkova A, Blokhina T, et al. Residual gammaH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells. Aging. 2017 Nov 21;9(11):2397-410. PubMed PMID: 29165316. Pubmed Central PMCID: 5723693.
4. Pustovalova M, Grekhova A, Astrelina T, Nikitina V, Dobrovolskaya E, Suchkova Y, et al. Accumulation of spontaneous gammaH2AX foci in long-term cultured mesenchymal stromal cells. Aging. 2016 Dec 11; 8(12):3498-506. PubMed PMID: 27959319. Pubmed Central PMCID: 5270682.
5. Wang F, Yu M, Yan X, Wen Y, Zeng Q, Yue W, et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells and Development. 2011 Dec; 20(12):2093-102. PubMed PMID: 21361847.
6. Haack-Sorensen M, Kastrup J. Cryopreservation and revival of mesenchymal stromal cells. Meth. Mol. Biol. 2011;698:161-74. PubMed PMID: 21431518.
7. Ozerov IV. Mathematical modeling of the double-strand DNA breaks induction and repair processes in mammalian cells under the rarely ionizing radiation action with different dose rates: PhD thesis of physics. Moscow. SRC - FMBC. 2015.
8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. PubMed PMID: 16923606.
9. Kotenko KV, Bushmanov AY, Ozerov IV, Guryev DV, Anchishkina NA, Smetanina NM, et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates. Int J Mol Sci. 2013. Jul 01; 14 (7):13719-26. PubMed PMID: 23880845. Pubmed Central PMCID: 3742213.
10. Harper JW, Elledge SJ. The DNA damage response: ten years after. Molecular Cell. 2007. Dec 14; 28 (5):739-45. PubMed PMID: 18082599. Epub 2007/12/18. eng.
11. Osipov AN, Lizunova EY, Gur’ev DV, Vorob’eva NY. Genome damage and reactive oxygen species production in the progenies of irradiated CHO-K1 cells. Biophysics. 2011; 56 (5):931-5.
12. Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, et al. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep. 2018 Nov 1;8(1):16202. PubMed PMID: 30385845. Pubmed Central PMCID: 6212584.
13. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016 Jan; 26(1):52-64. PubMed PMID: 26437586. Pubmed Central PMCID: 4862604.
14. Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol. 2016 Jun; 37-38:51-64. PubMed PMID: 27016036.
15. Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutation Res. 2017 Oct; 803-805:51-5. PubMed PMID: 28781144.
16. Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol. 2014 May; 26(5):243-9. PubMed PMID: 24630811.
17. Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer. 2010 Jan 5; 10: 4. PubMed PMID: 20051134. Pubmed Central PMCID: 2819996.
18. Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget. 2015 Sep 29; 6 (29):26876-85. PubMed PMID: 26337087. Pubmed Central PMCID: 4694959.
19. Lucas CC, Melo LR, de Sousa M, de Morais GB, Martins MF, Xavier FAF, et al. Cryoprotectant agents and cooling effect on embryos of Macrobrachium amazonicum. Zygote. 2018 Apr;26 (2):111-8. PubMed PMID: 29655380.
20. Smetanina NM, Pustovalova MV, Osipov AN. Effect of dimethyl sulfoxide on the extent of DNA single-strand breaks and alkali-labile sites induced by 365 nm UV-radiation in human blood lymphocyte nucleoids. Radiation Biology. Radioecology. 2014 Mar-Apr;54 (2):169-73. PubMed PMID: 25764818. (Russian).
21. Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radical Biology & Medicine. 2014 Aug;73:34-40. PubMed PMID: 24816295.