Китайская Народная Республика
Китайская Народная Республика
Китайская Народная Республика
УДК 55 Геология. Геологические и геофизические науки
In this paper, we review observational aspects of three common small-scale energetic events in the solar transition region (TR), namely TR explosive events, ultraviolet bursts and jets. These events are defined in either (both) spectral or (and) imaging data. The development of multiple instruments capable of observing the TR has allowed researchers to gain numerous insights into these phenomena in recent years. These events have provided a proxy to study how mass and energy are transported between the solar chromosphere and the corona. As the physical mechanisms responsible for these small-scale events might be similar to the mechanisms responsible for large-scale phenomena, such as flares and coronal mass ejections, analysis of these events could also help our understanding of the solar atmosphere from small to large scales. The observations of these small-scale energetic events demonstrate that the TR is extremely dynamic and is a crucial layer in the solar atmosphere between the chromosphere and the corona.
transition region, magnetic reconnection, small-scale dynamics, spectroscopic observations
1. Alexander C.E., Walsh R.W., Régnier S., Cirtain J., Winebarger A.R., et al. Anti-parallel EUV Flows Observed along Active Region Filament Threads with Hi-C. Astrophys. J. 2013, vol. 775, iss. 1, p. L32. DOI:https://doi.org/10.1088/2041-8205/775/1/L32.
2. Archontis V., Hood A.W., Savcheva A., Golub L., Deluca E. On the structure and evolution of complexity in sigmoids: a flux emergence model. Astrophys. J. 2009, vol. 691, iss. 2, pp. 1276-1291. DOI:https://doi.org/10.1088/0004-637X/691/2/1276.
3. Avrett E.H., Loeser R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Supplement Ser. 2008, vol. 175, iss. 1, pp. 229-276. DOI:https://doi.org/10.1086/523671.
4. Bartoe J.-D.F., Brueckner G.E. New stigmatic, coma-free, concave-grating spectrograph. J. Opt. Soc. Am. 1975, vol. 65, pp. 13-21.
5. Brueckner G.E., Bartoe J.-D.F. Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 1983, vol. 272, pp. 329-348. DOI:https://doi.org/10.1086/161297.
6. Brueckner G.E., Bartoe J.-D.F., Cook J.W., Dere K.P., Socker D., Kurokawa H., McCabe M. Plasma motions in an emerging flux region. Astrophys. J. 1988, vol. 335, pp. 986-995. DOI:https://doi.org/10.1086/166985.
7. Chae J., Wang H., Lee C.-Y., Goode P.R., Schühle U. Photospheric magnetic field changes associated with transition region explosive events. Astrophys. J. 1998a, vol. 497, iss. 2, pp. L109-L112. DOI:https://doi.org/10.1086/311289.
8. Chae J., Wang H., Lee C.-Y., Goode P.R., Schühle U. Chromospheric upflow events associated with transition region explosive events. Astrophys. J. 1998b, vol. 504, iss. 2, pp. L123-L126. DOI:https://doi.org/10.1086/311583.
9. Chen Y.J., Tian H., Huang Z., Peter H., Samanta T. Investigating the transition region explosive events and their relationship to network jets. Astrophys. J. 2019, vol. 873, iss. 1, article id. 79, 9 p. DOI:https://doi.org/10.3847/1538-4357/ab0417.
10. Cheung M.C.M., Schüssler M., Moreno-Insertis F. Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures. Astron. Astrophys. 2007, vol. 467, iss. 2, pp. 703-719. DOI:https://doi.org/10.1051/0004-6361:20077048.
11. Cheung M.C.M., Schüssler M., Tarbell T.D., Title A.M. Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 2008, vol. 687, iss. 2, pp. 1373-1387. DOI:https://doi.org/10.1086/591245.
12. Cheung M.C.M., Isobe H. Flux emergence (Theory). Living Reviews in Solar Phys. 2014, vol. 11, iss. 1, article id. 3, 128 p. DOI:https://doi.org/10.12942/lrsp-2014-3.
13. Cirtain J.W., Golub L., Winebarger A.R., De Pontieu B., Kobayashi K., Moore R.L., et al. Energy release in the solar corona from spatially resolved magnetic braids. Nature. 2013, vol. 493, iss. 7433, pp. 501-503. DOI:https://doi.org/10.1038/nature11772.
14. Culhane J.L., Harra L.K., James A.M., Al-Janabi K., Bradley L.J., Chaudry R.A., et al. The EUV Imaging Spectrometer for Hinode. Solar Phys. 2007, vol. 243, iss. 1, pp. 19-61. DOI:https://doi.org/10.1007/s01007-007-0293-1.
15. Curdt W., Tian H. Spectroscopic evidence for helicity in explosive events. Astron. Astrophys. 2011, vol. 532, no. L9, 4 p. DOI:https://doi.org/10.1051/0004-6361/201117116.
16. De Pontieu B., McIntosh S., Hansteen V.H., Carlsson M., Schrijver C.J., Tarbell T.D., et al. A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publ. of the Astron. Soc. of Japan. 2007, vol. 59, no. SP3, pp. S655-S662. DOI:https://doi.org/10.1093/pasj/59.sp3.S655.
17. De Pontieu B., McIntosh S.W., Carlsson M., Hansteen V.H., Tarbell T.D., Boerner P., et al. The origins of hot plasma in the solar corona. Science. 2011, vol. 331, iss. 6013, pp. 55-58. DOI:https://doi.org/10.1126/science.1197738.
18. De Pontieu B., Rouppe van der Voort L., McIntosh S.W., Pereira T.M.D., Carlsson M., et al. On the prevalence of small-scale twist in the solar chromosphere and transition region. Science. 2014a, vol. 346, iss. 6207, id. 1255732. DOI:https://doi.org/10.1126/science.1255732.
19. De Pontieu B., Title A.M., Lemen J.R., Kushner G.D., Akin D.J., Allard B., et al. The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 2014b, vol. 289, iss. 7, pp. 2733-2779. DOI:https://doi.org/10.1007/s11207-014-0485-y.
20. Dere K.P. Explosive events and magnetic reconnection in the solar atmosphere. Solar Wind Seven Colloquium. Eds. E. Marsch, R. Schwenn. Oxford, Pergamon Press, 1992, pp. 11-20.
21. Dere K.P., Bartoe J.-D.F., Brueckner G.E. High-resolution telescope and spectrograph observations of the quiet solar chromosphere and transition zone. Astrophys. J. 1984, vol. 281, pp. 870-883. DOI:https://doi.org/10.1086/162167.
22. Dere K.P., Bartoe J.-D.F., Brueckner G.E. Explosive events in the solar transition zone. Solar Phys. 1989, vol. 123, pp. 41-68. DOI:https://doi.org/10.1007/BF00150011.
23. Dere K.P., Bartoe J.-D.F., Brueckner G.E., Ewing J., Lund P. Explosive events and magnetic reconnection in the solar atmosphere. J. Geophys. Res. 1991, vol. 96, pp. 9399-9407. DOI:https://doi.org/10.1029/90JA02572.
24. Domingo V., Fleck B., Poland A.I. The SOHO mission: an overview. Solar Phys. 1995, vol. 162, iss. 1-2, pp. 1-37. DOI:https://doi.org/10.1007/BF00733425.
25. Ellerman F. Solar hydrogen “bombs”. Astrophys. J. 1917, vol. 46, p. 298. DOI:https://doi.org/10.1086/142366.
26. Fan Y. The emergence of a twisted Ω-tube into the solar atmosphere. Astrophys. J. 2001, vol. 554, iss. 1, pp. L111-L114. DOI:https://doi.org/10.1086/320935.
27. Fang C., Tang Y.H., Xu Z., Ding M.D., Chen P.F. Spectral analysis of Ellerman bombs. Astrophys. J. 2006, vol. 643, iss. 2, pp. 1325-1336. DOI:https://doi.org/10.1086/501342.
28. Fang C., Hao Q., Ding M.-D., Li Z. Can the temperature of Ellerman bombs be more than 10 000 K? Res. Astron. Astrophys. 2017, vol. 17, iss. 4, article id. 031. DOI:https://doi.org/10.1088/16744527/ 17/4/31.
29. Golub L., Deluca E., Austin G., Bookbinder J., Caldwell D., Cheimets P., et al. The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 2007, vol. 243, iss. 1, pp. 63-86. DOI:https://doi.org/10.1007/s11207-007-0182-1.
30. Guglielmino S.L., Zuccarello F., Young P.R., Murabito M., Romano P. IRIS observations of magnetic interactions in the solar atmosphere between preexisting and emerging magnetic fields. I. Overall evolution. Astrophys. J. 2018, vol. 856, iss. 2, article id. 127, 15 p. DOI:https://doi.org/10.3847/1538-4357/aab2a8.
31. Handy B.N., Acton L.W., Kankelborg C.C., Wolfson C.J., Akin D.J., Bruner M.E., et al. The transition region and coronal explorer. Solar Phys. 1999, vol. 187, iss. 2, pp. 229-260. DOI:https://doi.org/10.1023/A:1005166902804.
32. Hansteen V., De Pontieu B., Carlsson M., Lemen J., Title A., Boerner P., et al. The unresolved fine structure resolved: IRIS observations of the solar transition region. Science. 2014, vol. 346, iss. 6207, id. 1255757. DOI:https://doi.org/10.1126/science.1255757.
33. Harrison R.A. EUV blinkers: the significance of variations in the extreme ultraviolet quiet Sun. Solar Phys. 1997, vol. 175, iss. 2, pp. 467-485. DOI:https://doi.org/10.1023/A:1004964707047.
34. Harrison R.A., Sawyer E.C., Carter M.K., Cruise A.M., Cutler R.M., Fludra A., et al. The Coronal Diagnostic Spectrometer for the Solar and Heliospheric Observatory. Solar Phys. 1995, vol. 162, iss. 1-2, pp. 233-290. DOI:https://doi.org/10.1007/BF00733431.
35. Hassler D.M., Dammasch I.E., Lemaire P., Brekke P., Curdt W., Mason H.E., et al. Solar wind outflow and the chromospheric magnetic network. Science. 1999, vol. 283, iss. 5403, p. 810. DOI:https://doi.org/10.1126/science.283.5403.810.
36. Hong J., Ding M.D., Li Y., Fang C., Cao W. Spectral observations of Ellerman bombs and fitting with a two-cloud model. Astrophys. J. 2014, vol. 792, iss. 1, article id. 13, 10 p. DOI:https://doi.org/10.1088/0004-637X/792/1/13.
37. Hou Z., Huang Z., Xia L., Li B., Madjarska M.S., Fu H., et al. Narrow-line-width UV bursts in the transition region above sunspots observed by IRIS. Astrophys. J. 2016, vol. 829, iss. 2, article id. L30, 7 p. DOI:https://doi.org/10.3847/2041-8205/829/2/L30.
38. Hou Z., Huang Z., Xia L., Li B., Fu H. Observations of upward propagating waves in the transition region and corona above sunspots. Astrophys. J. 2018, vol. 855, iss. 1, article id. 65, 12 p. DOI:https://doi.org/10.3847/1538-4357/aaab5a.
39. Huang Z. Magnetic loops above a small flux-emerging region observed by IRIS, Hinode, and SDO. Astrophys. J., 2018, vol. 869, iss. 2, article id. 175, 13 p. DOI:https://doi.org/10.3847/1538-4357/aaef86.
40. Huang Z., Madjarska M.S., Doyle J.G., Lamb D.A. Coronal hole boundaries at small scales. IV. SOT view. Magnetic field properties of small-scale transient brightenings in coronal holes. Astron. Astrophys. 2012, vol. 548, id. A62, 19 p. DOI:https://doi.org/10.1051/0004-6361/201220079.
41. Huang Z., Madjarska M.S., Xia L., Doyle J.G., Galsgaard K., Fu H. Explosive events on a subarcsecond scale in IRIS observations: a case study. Astrophys. J. 2014a, vol. 797, iss. 2, article id. 88, 14 p. DOI:https://doi.org/10.1088/0004-637X/797/2/88.
42. Huang Z., Madjarska M.S., Koleva K., Doyle J.G., Duchlev P., Dechev M., Reardon K. Hα spectroscopy and multiwavelength imaging of a solar flare caused by filament eruption. Astron. Astrophys. 2014b, vol. 566, id. A148, 18 p. DOI:https://doi.org/10.1051/0004-6361/201323097.
43. Huang Z., Xia L., Li B., Madjarska M.S. Cool transition region loops observed by the Interface Region Imaging Spectrograph. Astrophys. J. 2015, vol. 810, iss. 1, article id. 46, 11 p. DOI:https://doi.org/10.1088/0004-637X/810/1/46.
44. Huang Z., Madjarska M.S., Scullion E.M., Xia L.-D., Doyle J.G., Ray T. Explosive events in active region observed by IRIS and SST/CRISP. Monthly Notices of the Royal Astron. Soc. 2017, vol. 464, iss. 2, pp. 1753-1761. DOI: 10.1093/ mnras/stw2469.
45. Huang Z., Mou C., Fu H., Deng L., Li B., Xia L. A magnetic reconnection event in the solar atmosphere driven by relaxation of a twisted arch filament system. Astrophys. J. 2018, vol. 853, iss. 2, article id. L26, 8 p. DOI:https://doi.org/10.3847/2041-8213/aaa88c.
46. Innes D.E., Inhester B., Axford W.I., Wilhelm K. Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature, 1997, vol. 386, iss. 6627, pp. 811-813. DOI:https://doi.org/10.1038/386811a0.
47. Innes D.E., Guo L.-J., Huang Y.-M., Bhattacharjee A. IRIS Si IV line profiles: an indication for the plasmoid instability during small-scale magnetic reconnection on the Sun. Astrophys. J. 2015, vol. 813, iss. 2, article id. 86, 11 p. DOI:https://doi.org/10.1088/0004-637X/813/2/86.
48. Jiao F., Xia L., Li B., Huang Z., Li X., Chandrashekhar K., et al. Sources of quasi-periodic propagating disturbances above a solar polar coronal hole. Astrophys. J. 2015, vol. 809, iss. 1, article id. L17, 5 p. DOI:https://doi.org/10.1088/2041-8205/809/1/L17.
49. Jiao F.-R., Xia L.-D., Huang Z.-H., Li B., Fu H., Yuan D., Chandrashekhar K. Damping and power spectra of quasi-periodic intensity disturbances above a solar polar coronal hole. Res. Astron. Astrophys. 2016, vol. 16, iss. 6, article id. 93. DOI: 10.1088/ 1674-4527/16/6/093.
50. Judge P.G. UV spectra, bombs, and the solar atmosphere. Astrophys. J. 2015, vol. 808, iss. 2, article id. 116, 5 p. DOI:https://doi.org/10.1088/0004-637X/808/2/116.
51. Kayshap P., Murawski K., Srivastava A.K., Dwivedi B.N. Rotating network jets in the quiet Sun as observed by IRIS. Astron. Astrophys. 2018, vol. 616, article id. A99, 8 p. DOI:https://doi.org/10.1051/0004-6361/201730990.
52. Kim Y.-H., Yurchyshyn V., Bong S.-C. Simultaneous observation of a hot explosion by NST and IRIS. Astrophys. J. 2015, vol. 810, iss. 1, article id. 38, 12 p. DOI:https://doi.org/10.1088/0004-637X/810/1/38.
53. Klimchuk J.A. On solving the coronal heating problem. Solar Phys. 2006, vol. 234, iss. 1, pp. 41-77. DOI:https://doi.org/10.1007/s11207-006-0055-z.
54. Kosugi T., Matsuzaki K., Sakao T., Shimizu T., Sone Y., Tachikawa S., et al. The Hinode (Solar-B) mission: an overview. Solar Phys. 2007, vol. 243, iss. 1, pp. 3-17. DOI: 10.1007/ s11207-007-9014-6.
55. Lemaire P., Wilhelm K., Curdt W., Schule U., Marsch E., Poland A.I., et al. First results of the SUMER telescope and spectrometer on SOHO. II. Imagery and data management. Solar Phys. 1997, vol. 170, iss. 1, pp. 105-122. DOI: 10.1023/ A:1004994702333.
56. Lemen J.R., Title A.M., Akin D.J., Boerner P.F., Chou C., Drake J.F., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 17-40. DOI:https://doi.org/10.1007/s11207-011-9776-8.
57. Li D. Transition-region explosive events produced by plasmoid instability. Res. Astron. Astrophys. 2019, vol. 19, no. 5, article id. 67, 10 p. DOI:https://doi.org/10.1088/1674-4527/19/5/67.
58. Li L., Zhang J., Peter H., Priest E., Chen H., Guo L., et al. Magnetic reconnection between a solar filament and nearby coronal loops. Nature Phys. 2016, vol. 12, iss. 9, pp. 847-851. DOI:https://doi.org/10.1038/nphys3768.
59. Li L., Zhang J., Peter H., Chitta L.P., Su J., Xia C., et al. Coronal condensations caused by magnetic reconnection between solar coronal loops. Astrophys. J. 2018a, vol. 864, iss. 1, article id. L4, 7 p. DOI:https://doi.org/10.3847/2041-8213/aad90a.
60. Li D., Li L., Ning Z. Spectroscopic and imaging observations of small-scale reconnection events. Monthly Notices Royal Astron. Soc. 2018b, vol. 479, iss. 2, pp. 2382-2388. DOI:https://doi.org/10.1093/mnras/sty1712.
61. Liu Z., Xu J., Gu B.-Z., Wang S., You J.-Q., Shen L.-X., et al. New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 2014, vol. 14, iss. 6, pp. 705-718. DOI:https://doi.org/10.1088/1674-4527/14/6/009.
62. Madjarska M.S., Doyle J.G. Temporal evolution of different temperature plasma during explosive events. Astron. Astrophys. 2002, vol. 382, pp. 319-327. DOI:https://doi.org/10.1051/0004-6361:20011610.
63. Madjarska M.S., Doyle J.G. Simultaneous observations of solar transition region blinkers and explosive events by SUMER, CDS and BBSO. Are blinkers, explosive events and spicules the same phenomenon? Astron. Astrophys. 2003, vol. 403, pp. 731-741. DOI:https://doi.org/10.1051/0004-6361:20030397.
64. Madjarska M.S., Doyle J.G., De Pontieu B. Explosive events associated with a surge. Astrophys. J. 2009, vol. 701, iss. 1, pp. 253-259. DOI:https://doi.org/10.1088/0004-637X/701/1/253.
65. Madjarska M.S., Huang Z., Doyle J.G., Subramanian S. Coronal hole boundaries evolution at small scales. III. EIS and SUMER views. Astron. Astrophys. 2012, vol. 545, article id. A67, 16 p. DOI:https://doi.org/10.1051/0004-6361/201219516.
66. Mariska J.T. The quiet solar transition region. Ann. Rev. Astron. Astrophys. 1986, vol. 24. pp. 23-48. DOI: 10.1146/ annurev.aa.24.090186.000323.
67. Mariska J.T. The Solar Transition Region. New York, Cambridge University Press, 1992, 290 p.
68. Mou C., Huang Z., Xia L., Madjarska M.S., Li B., Fu H., Jiao F., Hou Z. Magnetic flux supplement to coronal bright points. Astrophys. J. 2016, vol. 818, iss. 1, article id. 9, 13 p. DOI:https://doi.org/10.3847/0004-637X/818/1/9.
69. Muglach K. Explosive events and the evolution of the photospheric magnetic field. Astrophys. J. 2008, vol. 687, iss. 2, pp. 1398-1405. DOI:https://doi.org/10.1086/592065.
70. Narang N., Arbacher R.T., Tian H., Banerjee D., Cranmer S.R., DeLuca E.E., McKillop S. Statistical study of network jets observed in the solar transition region: a comparison between coronal holes and quiet-Sun regions. Solar Phys. 2016, vol. 291, iss. 4, pp. 1129-1142. DOI:https://doi.org/10.1007/s11207-016-0886-1.
71. Nelson C.J., Shelyag S., Mathioudakis M., Doyle J.G., Madjarska M.S., Uitenbroek H., Erdélyi R. Ellerman bombs-evidence for magnetic reconnection in the lower solar atmosphere. Astrophys. J. 2013, vol. 779, iss. 2, article id. 125, 10 p. DOI:https://doi.org/10.1088/0004-637X/779/2/125.
72. Nelson C.J., Scullion E.M., Doyle J.G., Freij N., Erdélyi R. Small-scale structuring of Ellerman bombs at the solar limb. Astrophys. J. 2015, vol. 798, iss. 1, article id. 19, 9 p. DOI:https://doi.org/10.1088/0004-637X/798/1/19.
73. Nelson C.J., Doyle J.G., Erdélyi R. Statistical study of network jets observed in the solar transition region: a comparison between coronal holes and quiet-Sun regions. Monthly Notices Royal Astron. Soc. 2016, vol. 463, iss. 2, pp. 2190-2201. DOI:https://doi.org/10.1093/mnras/stw2034.
74. Nelson C.J., Freij N., Reid A., Oliver R., Mathioudakis M., Erdélyi R. IRIS burst spectra co-spatial to a quiet-Sun Ellerman-like brightening. Astrophys. J. 2017, vol. 845, iss. 2, article id. 16, 11 p. DOI:https://doi.org/10.3847/1538-4357/aa7e7a.
75. Ni L., Lin J., Roussev I.I., Schmieder B. Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets. Astrophys. J. 2016, vol. 832, iss. 2, article id. 195, 11 p. DOI:https://doi.org/10.3847/0004-637X/832/2/195.
76. Ni L., Lukin V.S., Murphy N.A., Lin J. Magnetic reconnection in strongly magnetized regions of the low solar chromosphere. Astrophys. J. 2018a, vol. 852, iss. 2, article id. 95, 11 p. DOI:https://doi.org/10.3847/1538-4357/aa9edb.
77. Ni L., Lukin V.S., Murphy N.A., Lin J. Magnetic reconnection in the low solar chromosphere with a more realistic radiative cooling model. Phys. Plasmas. 2018b, vol. 25, iss. 4, id. 042903. DOI:https://doi.org/10.1063/1.5018351.
78. Ning Z., Innes D., Solanki S. Line profile characteristics of solar explosive event bursts. Astron. Astrophys. 2004, vol. 419, pp. 1141-1148. DOI:https://doi.org/10.1051/0004-6361:20034499.
79. Pant V., Dolla L., Mazumder R., Banerjee D., Krishna Prasad S., Panditi V. Dynamics of on-disk plumes as observed with the Interface Region Imaging Spectrograph, the Atmospheric Imaging Assembly, and the Helioseismic and Magnetic Imager. Astrophys. J. 2015, vol. 807, iss. 1, article id. 71, 12 p. DOI:https://doi.org/10.1088/0004-637X/807/1/71.
80. Pariat E., Aulanier G., Schmieder B., Georgoulis M.K., Rust D.M., Bernasconi P.N. Resistive emergence of undulatory flux tubes. Astrophys. J. 2004, vol. 614, iss. 2, pp. 1099-1112. DOI:https://doi.org/10.1086/423891.
81. Pariat E., Masson S., Aulanier G. Current buildup in emerging serpentine flux tubes. Astrophys. J. 2009, vol. 701, iss. 2, pp. 1911-1921. DOI:https://doi.org/10.1088/0004-637X/701/2/1911.
82. Parker E.N. Magnetic neutral sheets in evolving fields. I. General theory. Astrophys. J. 1983a, vol. 264, p. 635. DOI:https://doi.org/10.1086/160636.
83. Parker E.N. Magnetic neutral sheets in evolving fields. II. Formation of the solar corona. Astrophys. J. 1983b, vol. 264, p. 642. DOI:https://doi.org/10.1086/160637.
84. Parker E.N. Nanoflares and the solar X-ray corona. Astrophys. J. 1988, vol. 330, pp. 474-479. DOI:https://doi.org/10.1086/166485.
85. Pereira T.M.D., De Pontieu B., Carlsson M. Quantifying spicules. Astrophys. J. 2012, vol. 759, iss. 1, article id. 18, 16 p. DOI:https://doi.org/10.1088/0004-637X/759/1/18.
86. Pereira T.M.D., De Pontieu B., Carlsson M., Hansteen V., Tarbell T.D., Lemen J., Title A., Boerner P., Hurlburt N., et al. An Interface Region Imaging Spectrograph first view on solar spicules. Astrophys. J. 2014, vol. 792, iss. 1, article id. L15, 6 p. DOI:https://doi.org/10.1088/2041-8205/792/1/L15.
87. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 3-15. DOI:https://doi.org/10.1007/s11207-011-9841-3.
88. Peter H., Tian H., Curdt W., Schmit D., Innes D., De Pontieu B., Lemen J., Title A., Boerner P., Hurlburt N., et al. Hot explosions in the cool atmosphere of the Sun. Science. 2014, vol. 346, iss. 6207, article id. 1255726. DOI: 10.1126/ science.1255726.
89. Porter J.G., Dere K.P. The magnetic network location of explosive events observed in the solar transition region. Astrophys. J. 1991, vol. 370, pp. 775-778. DOI:https://doi.org/10.1086/169860.
90. Priest E. Magnetohydrodynamics of the Sun. Cambridge, Cambridge University Press, 2014, 582 p. DOI:https://doi.org/10.1017/CBO 9781139020732.
91. Priest E., Forbes T. Magnetic Reconnection: MHD Theory and Applications. New York, Cambridge University Press, 2000, 597 p. DOI:https://doi.org/10.1017/CBO9780511525087.
92. Priest E.R., Chitta L.P., Syntelis P. A cancellation nanoflare Model for solar chromospheric and coronal heating. Astrophys. J. Lett. 2018, vol. 862, iss. 2, article id. L24, 7 p. DOI:https://doi.org/10.3847/2041-8213/aad4fc.
93. Qi Y.Q., Huang Z., Xia L., Li B., Fu H. Liu W., Sun M., Hou Z. On the relation between transition region network jets and coronal plumes. Solar Phys. 2019. [Under review].
94. Reid A., Mathioudakis M., Doyle J.G., Scullion E., Nelson C.J., Henriques V., Ray T. Magnetic flux cancellation in Ellerman bombs. Astrophys. J. 2016, vol. 823, iss. 2, article id. 110, 10 p. DOI:https://doi.org/10.3847/0004-637X/823/2/110.
95. Samanta T., Pant V., Banerjee D. Propagating disturbances in the solar corona and spicular connection. Astrophys. J. 2015, vol. 815, iss. 1, article id. L16, 6 p. DOI:https://doi.org/10.1088/2041-8205/815/1/L16.
96. Scherrer P.H., Schou J., Bush R.I., Kosovichev A.G., Bogart R.S., Hoeksema J.T., Liu Y., Duvall T.L., Zhao J., Title A.M., Schrijver C.J., Tarbell T.D., Tomczyk S. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 207-227. DOI:https://doi.org/10.1007/s11207-011-9834-2.
97. Schrijver C.J. Braiding-induced interchange reconnection of the magnetic field and the width of solar coronal loops. Astrophys. J. 2007, vol. 662, iss. 2, pp. L119-L122. DOI:https://doi.org/10.1086/519455.
98. Su Y., Veronig A.M., Holman G.D., Dennis B.R., Wang T., Temmer M., Gan W. Imaging coronal magnetic-field reconnection in a solar flare. Nature Phys. 2013, vol. 9, iss. 8, pp. 489-493. DOI:https://doi.org/10.1038/nphys2675.
99. Sun J.Q., Cheng X., Ding M.D., Guo Y., Priest E.R., Parnell C.E., Edwards S.J., Zhang J., Chen P.F., Fang C. Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption. Nature Communications. 2015, vol. 6, article id. 7598, 7 p. DOI:https://doi.org/10.1038/ncomms8598.
100. Syntelis P., Priest E.R., Chitta L.P. A cancellation nanoflare model for solar chromospheric and coronal heating. II. 2D theory and simulations. Astrophys. J. 2019, vol. 872, iss. 1, article id. 32, 15 p. DOI:https://doi.org/10.3847/1538-4357/aafaf8.
101. Teriaca L., Banerjee D., Falchi A., Doyle J.G., Madjarska M.S. Transition region small-scale dynamics as seen by SUMER on SOHO. Astron. Astrophys. 2004, vol. 427, pp. 1065-1074. DOI:https://doi.org/10.1051/0004-6361:20040503.
102. Testa P., De Pontieu B., Allred J., Carlsson M., Reale F., Daw A., Hansteen V., Martinez-Sykora J., Liu W., deLuca E.E., Golub L., et al. Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares. Science. 2014, vol. 346, iss. 6207, id. 1255724. DOI:https://doi.org/10.1126/science.1255724.
103. Tian H. Probing the solar transition region: current status and future perspectives. Res. Astron. Astrophys. 2017, vol. 17, iss. 11, article id. 110, 18 p. DOI:https://doi.org/10.1088/1674-4527/17/11/110.
104. Tian H., DeLuca E.E., Cranmer S.R., De Pontieu B., Peter H., Martínez-Sykora J., Golub L., McKillop S., Reeves K.K., et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science. 2014, vol. 346, iss. 6207, id. 1255711. DOI:https://doi.org/10.1126/science.1255711.
105. Tian H., Xu Z., He J., Madsen C. Are IRIS bombs connected to Ellerman bombs? Astrophys. J. 2016, vol. 824, iss. 2, article id. 96, 14 p. DOI:https://doi.org/10.3847/0004-637X/824/2/96.
106. Tian H., Zhu X., Peter H., Zhao J., Samanta T., Chen Y. Magnetic reconnection at the earliest stage of solar flux emergence. Astrophys. J. 2018a, vol. 854, iss. 2, article id. 174, 13 p. DOI:https://doi.org/10.3847/1538-4357/aaaae6.
107. Tian H., Yurchyshyn V., Peter H., Solanki S.K., Young P.R., Ni L., Cao W., Ji K., Zhu Y., Zhang J., Samanta T., et al. Frequently occurring reconnection jets from sunspot light bridges. Astrophys. J. 2018b vol. 854, iss. 2, article id. 92, 13 p. DOI:https://doi.org/10.3847/1538-4357/aaa89d.
108. Toriumi S., Katsukawa Y., Cheung M.C.M. Various local heating events in the earliest phase of flux emergence. Astrophys. J. 2017, vol. 836, iss. 1, article id. 63, 13 p. DOI:https://doi.org/10.3847/1538-4357/836/1/63.
109. Tsuneta S., Ichimoto K., Katsukawa Y., Nagata S., Otsubo M., Shimizu T., Suematsu Y., Nakagiri M., Noguchi M., Tarbell T., Title A., et al. The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 2008, vol. 249, iss. 2, pp. 167-196. DOI:https://doi.org/10.1007/s11207-008-9174-z.
110. Tu C.-Y., Zhou C., Marsch E., Xia L.-D., Zhao L., Wang J.-X., Wilhelm K. Solar wind origin in coronal funnels. Science. 2005, vol. 308, iss. 5721, pp. 519-523. DOI:https://doi.org/10.1126/science.1109447.
111. van Ballegooijen A.A., Martens P.C.H. Formation and eruption of solar prominences. Astrophys. J. 1989, vol. 343, pp. 971-984. DOI:https://doi.org/10.1086/167766.
112. Vernazza J.E., Avrett E.H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. Ser. 1981, vol. 45, pp. 635-725. DOI:https://doi.org/10.1086/190731.
113. Vissers G.J.M., Rouppe van der Voort L.H.M., Rutten R.J., Carlsson M., De Pontieu B. Ellerman bombs at high resolution. III. Simultaneous observations with IRIS and SST. Astrophys. J. 2015, vol. 812, iss. 1, article id. 11, 18 p. DOI:https://doi.org/10.1088/0004-637X/812/1/11.
114. Wedemeyer-Böhm S., Lagg A., Nordlund A. Coupling from the photosphere to the chromosphere and the corona. Space Sci. Rev. 2009, vol. 144, iss. 1-4, pp. 317-350. DOI: 10.1007/ s11214-008-9447-8.
115. Wilhelm K. Solar spicules and macrospicules observed by SUMER. Astron. Astrophys. 2000, vol. 360, pp. 351-362.
116. Wilhelm K., Curdt W., Marsch E., Schühle U., Lemaire P., Gabriel A., Vial J.-C., Grewing M., Huber M.C.E., Jordan S.D., Poland A.I., et al. SUMER - Solar Ultraviolet Measurements of Emitted Radiation. Solar Phys. 1995, vol. 162, iss. 1-2, pp. 189-231. DOI:https://doi.org/10.1007/BF00733430.
117. Xia L.D., Marsch E., Curdt W. On the outflow in an equatorial coronal hole. Astron. Astrophys. 2003, vol. 399, pp. L5-L9. DOI:https://doi.org/10.1051/0004-6361:20030016.
118. Xia L.D., Marsch E., Wilhelm K. On the network structures in solar equatorial coronal holes. Observations of SUMER and MDI on SOHO. Astron. Astrophys. 2004, vol. 424, pp. 1025-1037. DOI:https://doi.org/10.1051/0004-6361:20047027.
119. Xia L.D., Popescu M.D., Doyle J.G., Giannikakis J. Time series study of EUV spicules observed by SUMER/SOHO. Astron. Astrophys. 2005, vol. 438, iss. 3, pp. 1115-1122. DOI:https://doi.org/10.1051/0004-6361:20042579.
120. Xu Z., Jin Z.Y., Xu F.Y., Liu Z. Primary observations of solar filaments using the multi-channel imaging system of the New Vacuum Solar Telescope. Nature of Prominences and their Role in Space Weather. 2014, vol. 300, pp. 117-120. DOI:https://doi.org/10.1017/S1743921313010831.
121. Xue Z., Yan X., Cheng X., Yang L., Su Y., Kliem B., Zhang J., Liu Z., Bi Y., Xiang Y., Yang K., Zhao L. Observing the release of twist by magnetic reconnection in a solar filament eruption. Nature Communications. 2016, vol. 7, 11837. DOI:https://doi.org/10.1038/ncomms11837.
122. Yang S., Zhang J., Xiang Y. Magnetic Reconnection between small-scale loops observed with the New Vacuum Solar Telescope. Astrophys. J. Lett. 2015, vol. 798, iss. 1, L11, 6 p. DOI:https://doi.org/10.1088/2041-8205/798/1/L11.
123. Yang L., Peter H., He J.-S., Tu C.-Y., Wang L.-H., Zhang L., Yan L.-M. Formation of cool and warm jets by magnetic flux emerging from the solar chromosphere to transition region. Astrophys. J. 2018, vol. 852, iss. 1, article id. 16, 15 p. DOI:https://doi.org/10.3847/1538-4357/aa9996.
124. Young P.R., Tian H., Peter H., Rutten R.J., Nelson C.J., Huang Z., Schmieder B., Vissers G.J.M., Toriumi S., et al. Solar ultraviolet bursts. Space Sci. Rev. 2018, vol. 214, iss. 8, article id. 120, 39 p. DOI:https://doi.org/10.1007/s11214-018-0551-0.
125. Zhang M., Xia L.-D., Tian H., Chen Y. Signatures of transition region explosive events in hydrogen Lyβ profiles. Astron. Astrophys. 2010, vol. 520, article id. A37, 8 p. DOI:https://doi.org/10.1051/0004-6361/201014240.
126. Zhang Y.Z., Shibata K., Wang J.X., Mao X.J., Matsumoto T., Liu Y., Su J.T. Revision of solar spicule classification. Astrophys. J. 2012, vol. 750, iss. 1, article id. 16, 9 p. DOI:https://doi.org/10.1088/0004-637X/750/1/16.
127. Zhao J., Schmieder B., Li H., Pariat E., Zhu X., Feng L., Grubecka M. Observational evidence of magnetic reconnection for brightenings and transition region arcades in IRIS observations. Astrophys. J. 2017, vol. 836, iss. 1, article id. 52, 13 p. DOI:https://doi.org/10.3847/1538-4357/836/1/52.
128. Zwaan C. Elements and patterns in the solar magnetic field. Ann. Rev. Astron. Astrophys. 1987, vol. 25, pp. 83-111. DOI:https://doi.org/10.1146/annurev.aa.25.090187.000503.