SECOND-ORDER PERTURBATIONS IN ALFVéN WAVES IN COLD PLASMA APPROXIMATION
Аннотация и ключевые слова
Аннотация (русский):
The second-order amplitude perturbations driven by Alfvén waves are studied. Equations for such second-order perturbations are derived and their solutions are found. The second-order perturbations are shown to be generated by the magnetic pressure of the waves. They represent plasma flows and magnetic field perturbations in a plane perpendicular to the direction of the field perturbation and plasma displacement in the Alfvén wave. In connection with the interpretation of fast plasma flows observed in the magnetotail, of particular interest is the description of second-order flows, which relates their properties to properties of Alfvén waves and the disturbance that generates them. The results suggest that at least some of the fast plasma flows observed in the magnetotail can be one of the manifestations of propagating Alfvén waves. The environment model and cold plasma approximation in use are quite applicable for the plasma sheet boundary layers, where an essential part of the fast plasma flows occurs.

Ключевые слова:
Alfvén waves, magnetotail, fast plasma flows
Список литературы

1. Birn J., Liu Y., Daughton W., Hesse M., Schindler K. Reconnection and interchange instability in the near magnetotail. Earth, Planets and Space. 2015, vol. 67, 110. DOI:https://doi.org/10.1186/s40623-015-0282-3.

2. Cao J.B., Ma Y.D., Parks G., Dandouras H., Remeand I., Nakamura R., Zang T.L., Zong Q., Lucek E., Carr C.M., Liu Z.X., Zhou G.C. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. J. Geophys. Res.: Space Phys. 2006, vol. 111, iss. A4, A04206. DOI:https://doi.org/10.1029/2005 JA011322.

3. Dmitrienko I.S. Nonlinear effects in Alfvén resonance. J. Plasma Phys. 1997, vol. 57, no. 2, pp. 311-326.

4. Dmitrienko I.S. Formation of accelerated ion flows in Alfvén disturbances of the magnetotail // Geomagnetism and Aeronomy. 2011. V. 51, N 8. P. 1160-1164. DOI: 10.1134/ S0016793211080032.

5. Dmitrienko I.S. Evolution of FMS and Alfvén waves produced by the initial disturbance in the FMS waveguide. J. Plasma Phys. 2013, vol. 79, no. 1, pp. 7-17. DOI:https://doi.org/10.1017/S00 22377812000608.

6. Du A.M., Nakamura R., Zhang T.L., Panov E.V., Baumjohann W., Luo H., Xu W.Y., Volwerk Q.M., Luand M., Retino A., Zieger B., Angelopoulos V., Glassmeier K.-H., McFadden J.P., Larson D. Fast tailward flows in the plasma sheet boundary layer during a substorm on 9 March 2008: THEMIS observations. J. Geophys. Res.: Space Phys. 2011, vol. 116, iss. A3, A03216. DOI:https://doi.org/10.1029/2010JA015969.

7. Fruhauff D., Glassmeier K.-H. Statistical analysis of magnetotail fast flows and related magnetic disturbances. Ann. Geophys. 2016, vol. 34, pp. 399-409.

8. Keiling A. Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci. Rev. 2009, vol. 142, iss. 1-4, pp. 73-156. DOI:https://doi.org/10.1007/s11214-008-9463-8.

9. Keiling A., Wygant J.R., Cattell C., Temerin M., Mozer F.S., Kletzing C.A., Scudder J., Russell S.T., Lotko W., Streltsov A.V. Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms. Geophys. Res. Lett. 2000, vol. 27, iss. 19, pp. 3169-3172. DOI:https://doi.org/10.1029/2000 GL000127.

10. Keiling A., Parks G.K., Wygant J.R., Dombeck J., Mozer F.S., Russell S.T., Streltsov A.V., Lotko W. Some properties of Alfvén waves: observations in the tail lobes and the plasma sheet boundary layer. J. Geophys. Res.: Space Phys. 2005, vol. 110, iss. A10, A10S11. DOI:https://doi.org/10.1029/2004J A010907.

11. Klimushkin D.Yu., Mager P.N., Pilipenko, V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth. Planets and Space. 2012, vol. 64, iss. 9, pp. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.

12. Lee D.Y. Ballooning instability in the tail plasma sheet. Geophys. Res. Lett. 1998, vol. 25, iss. 21, pp. 4095-4098. DOI:https://doi.org/10.1029/1998GL900105.

13. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: Influence of a transition layer. Ann. Geophys. 2003, vol. 21, iss. 5, pp. 1083-1093. DOI:https://doi.org/10.5194/angeo-21-1083-2003.

14. Leonovich A.S., Kozlov D.A. On balooning instability in current sheets. Plasma Physics and Controlled Fusion. 2013, vol. 55, no. 8, pp. 085013. DOI:https://doi.org/10.1088/0741-3335/55/8/085013.

15. Mager P.N., Klimushkin D.Yu. Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma. Plasma Physics and Controlled Fusion. 2017, vol. 59, iss. 9, 095005. DOI:https://doi.org/10.1088/1361-6587/aa790c.

16. Mazur N.G., Chuiko D.A. Kelvin-Helmholtz instability on the magnetopause, magnetohydrodynamic waveguide in the outer magnetosphere, and Alfvén resonance deep in the magnetosphere. Plasma Physics Rep. 2013, vol. 39, no. 6, pp. 488-503.

17. Mazur N.G., Fedorov E.N., Pilipenko V.A. MHD Waveguides in Space Plasma. Plasma Physics Rep. 2010, vol. 36, no. 7, pp. 609-626. DOI:https://doi.org/10.1134/S1063780X10070081.

18. Pokhotelov O.A., Onishchenko O.G., Sagdeev R.Z., Treumann R.A. Nonlinear dynamics of inertial Alfvén waves in the upper ionosphere: Parametric generation of electrostatic convective cells. J. Geophys. Res.: Space Phys. 2003, vol. 108, iss. A7, 1291. DOI:https://doi.org/10.1029/2003JA009888.

19. Pokhotelov O.A., Onishchenko O.G., Sagdeev R.Z., Balikhin M.A., Stenflo L. Parametric interaction of kinetic Alfvén waves with convective cells. J. Geophys. Res.: Space Phys. 2004, vol. 109, iss. A3, A03305. DOI:https://doi.org/10.1029/2003JA010185.

20. Takada T., Nakamura R., Baumjohann W., Seki K., Voros Z., Asano Z., Volwerk M., Runov A., Zhang T.L., Balogh A., Paschmann G., Torbert R.B., Klecker, B., Reme H., Puhl-Quinn P., Canu P., Decreau P.M.E. Alfvén waves in the near-PSBL lobe: Cluster observations. Ann. Geophys. 2006, vol. 24, pp. 1001-1013.

21. Takada T., Seki K., Hirahara M., Fujimoto M., Hayakawa Y., Saitoand H., Mukai T. Statistical properties of lowfrequency waves and ion beams in the plasma sheet boundary layer: Geotail observations. J. Geophys. Res.: Space Phys. 2005, vol. 110, iss. A2, A02204. DOI:https://doi.org/10.1029/2004JA010395.

22. Walker A.D.M. Excitation of field line resonances by sources outside the magnetosphere. Ann. Geophys. 2005, vol. 23, no. 1, pp. 3375-3388. DOI:https://doi.org/10.5194/angeo-23-3375-2005.

23. Wright A.N., Allan W. Simulations of Alfvén waves in the geomagnetic tail and their auroral signatures. J. Geophys. Res. 2008, vol. 113, iss. A2, A02206. DOI:https://doi.org/10.1029/2007JA012464.

24. Zhao J.S., Wu D.J., Yu M.Y., Lu J.Y. Convective cell generation by kinetic Alfvén wave turbulence in the auroral ionosphere. Phys. Plasmas. 2012, vol. 19, no. 6, 062901. DOI:https://doi.org/10.1063/1.4729327.

25. Zong Q.-G., Fu S.Y., Baker D.N., Goldstein M.L., Song P., Slavin J.A., Fritz T.A., Cao J.B., Amm O., Frey H., Korth A., Daly P.W., Reme H., Pedersen A. Earthward flowing plasmoid: Structure and its related ionospheric signature. J. Geophys. Res.: Space Phys. 2007, vol. 112, iss. A7, A07203. DOI:https://doi.org/10.1029/2006JA012112.

Войти или Создать
* Забыли пароль?