HEURISTIC MODEL OF SOLAR X-RAY SPECTRUM ACCORDING TO SATELLITE DATA FOR GEOPHYSICAL APPLICATIONS
Аннотация и ключевые слова
Аннотация (русский):
Model and computational algorithm for recovering the X-ray component of the solar spectrum based on GOES XL (0.1–0.8 nm), XS (0.05–0.4 nm or 0.05–0.3 nm) and SDO QD (0.1–7 nm) channels data are presented. The model based the Mewe approximation of emission from optically thin plasmas that presents a temperature-like spectrum. The possibility to present the result spectrum as a superposition of Mewe spectrums placed in the solar absorbing atmosphere at one optical depth for its temperature parameter energy is suggested in this paper. So the model is a variation of the multi-temperature approximation. Spectrum parameters are determined on the basis of support functions, approximation expressions for which are given in appendix.

Ключевые слова:
solar X-ray, spectrum model, satellite data
Список литературы

1. Afraimovich E, Astafyeva E, Demyanov V, Edemskiy I, Gavrilyuk N, et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, no. A27. DOI:https://doi.org/10.1051/swsc/2013049.

2. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the Ionosphere]. Moscow, Nauka Publ., 1988. 528 p. (In Russian).

3. Culhane J.L., Acton L.W. A simplified thermal continuum function for the X-ray emission from coronal plasmas. Monthly Notices of the Royal Astronomical Society. 1970, vol. 151, pp. 141-147. DOI:https://doi.org/10.1093/mnras/151.1.141.

4. Dennis B.R. Solar flare hard X-ray observations. Solar Phys. 1988, vol. 118, pp. 49-94. DOI:https://doi.org/10.1007/BF00148588.

5. Dennis B.R., Phillips K.J.H., Sylwester J., Sylwester B., Schwartz R.A., Tolbert K.A. Thermal and nonthermal contributions to the solar flare X-ray flux. 2006. URL: http://www.cbk.pan.wroc.pl/body/publikacje/2006/therm_nonth_htm.html (Accessed 21.01.2018).

6. Eddy J. A New Sun: The Solar Results from Skylab. National Aeronautics and Space Administration, Washington, D.C., 1979. P. 37. URL: https://history.nasa.gov/SP-402/ contents.htm.

7. Enell C.-F., Verronen P.T., Beharrell M.J., Vierinen J.P., Kero A., Seppala A., et al. Case study of the mesospheric and lower thermospheric effects of solar X-ray flares: coupled ion-neutral modeling and comparison with EISCAT and riometer measurements. Ann. Geophys. 2008, vol. 26, pp. 2311-2321. www.ann-geophys.net/26/ 2311/2008.

8. Garcia H.A. Temperature and emission measure from GOES soft X-ray measurements. Solar Phys. 1994, vol. 154, pp. 275-308. DOI:https://doi.org/10.1007/BF00681100.

9. GOES X-ray Sensor (XRS) Measurements. Version 1.4.1. URL: https://www.ngdc.noaa.gov/stp/satellite/goes/doc/GOES_ XRS_readme.pdf (Accessed 11.02.2018).

10. Korsunskaja J.A. The effect of hard X-rays and gamma radiation of the Sun on the Earth’s ionosphere and other processes in the geosphere. Part I. Experimental data. Dinamicheskie protsessy v geosferakh. [Dynamic Processes in Geospheres]. Moscow, GEOS Publ., 2015. pp. 122-133. (In Russian).

11. Lyakhov A.N. et al. Programma dlya EVM IDG-DS [IDG-DS PC Program]. Patent RF no. 2015612232, 2015.

12. Mewe R., Lemen J.R., van den Oord G.H.J. Calculated X-radiation from optically thin plasmas. VI. Improved calculations for continuum emission and approximation formulae for nonrelativistic average Gaunt factors. Astron. Astrophys.: Suppl. Ser. 1986, vol. 65, pp.511-536.

13. Nusinov A.A., Chulankin D.I. Variations of the solar soft X-rays during flares. Geomagnetism and Aeronomy. 1997, vol. 37, no. 1, pp. 14-23.

14. Ponomarchuk S.N., Kurkin V.I., Lyakhov A.N., Romanova E.B., Tashchilin A.V. The modeling of HF radio wave propagation characteristics during the periods of solar flares. Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics. 2015. 96805F. DOI:https://doi.org/10.1117/12.2203591.

15. Woods T.N., F.G. Eparvier, Hock R., Jones A.R., Woodraska D., Judge D., et al. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. Solar Phys. 2012, vol. 275, pp.115-143. DOI:https://doi.org/10.1007/s11207-009-9487-6.

Войти или Создать
* Забыли пароль?