ОПРЕДЕЛЕНИЕ РАБОЧЕЙ ПЛОЩАДИ ТОРЦЕВЫХ РЕШЕТ ДРОБИЛКИ ЗЕРНА С УВЕЛИЧЕННОЙ СЕПАРИРУЮЩЕЙ ПОВЕРХНОСТЬЮ
Аннотация и ключевые слова
Аннотация (русский):
Для разрушения зернового материала в кормоприготовлении широко применяют молотковые дробилки. При их работе в камере измельчения в результате вращения ротора возникают воздушные потоки, вовлекающие частицы раздробленного материала и целые зерновки в движение, создавая этим воздушно-продуктивный слой. На эти воздушные потоки оказывают влияние форма и геометрические параметры лопаток, их расположение, диаметр и скорость вращения ротора, параметры сепарирующей поверхности. В условиях Княгининского университета была разработана молотковая дробилка с увеличенной сепарирующей поверхностью, рабочая камера которой образована двумя торцевыми и одним периферийным решетами. В качестве рабочих органов на ротор устанавливали угловые молотки, прямые молотки или комбинацию прямых молотков и угловых лопаток, размещенных между ними. Исследование проводили с целью изучения влияния вида рабочих органов и площади перекрывания торцевого решета на направление воздушных потоков в камере измельчения и определения рабочей площади торцевого решета. Для угловых молотков характерно движение воздушных потоков в осевом направлении и следующее их распределение: всасывание в камеру измельчения в центральной части торцевого решета и выталкивание по внешней окружности решета. Исходя из этого, всю площадь торцевого решета можно разделить на три части: зона всасывания, зона выталкивания и переходная зона. Увеличение длины угловых лопаток приводит к росту рабочей площади торцевых решет, следовательно, использование комбинированных рабочих органов рационально. Установка рабочих органов в виде прямых молотков нецелесообразна, так как рабочая площадь торцевых решет при этом минимальна. Нерационально и использование рабочих органов в виде угловых молотков, поскольку для них характерна максимальная площадь зоны втягивания и малая рабочая площадь торцевых решет

Ключевые слова:
молотковая дробилка, воздушный поток, рабочие органы, торцевое решето
Текст
Текст (PDF): Читать Скачать

Кормоприготовление – одна из наиболее важных составляющих сельского хозяйства. Правильная подготовка кормовых смесей перед скармливанием их животным способствует более полному усвоению питательных веществ и, как следствие, уменьшению объема кормов, затрачиваемого на производство единицы массы продукции животноводства [1, 2, 3]. Зерно – один из основных источников растительного белка. Перед введением в кормовую смесь его необходимо измельчить до соответствующих зоотехническим требованиям гранулометрических параметров [4]. Существует множество различных способов разрушения зернового материала, один из которых – дробление в результате свободного удара о быстро движущиеся рабочие органы, осуществляемого в молотковых дробилках [5, 6].

Работа молотковых дробилок включает три основных стадии: подача материала, его измельчение и эвакуация готового продукта [7]. Результаты анализа конструкций молотковых дробилок свидетельствуют, что возможны различные способы подачи исходного сырья в их рабочую камеру. Конструкционно наиболее простой способ – подача зерновой массы самотеком. Однако он содержит ряд недостатков, основные из которых невозможность контроля скорости подачи, а это важный технологический параметр, влияющий на качество готового продукта [8]. Недостаточная скорость подачи сопровождается пониженной производительностью дробилки и увеличенными удельными энергозатратами, а чрезмерно высокая приводит к росту содержания недоизмельченного продукта и повышению износа рабочих органов [9, 10, 11].

Принудительная подача зернового материала может осуществляться аэродинамическим и механическим способами, которые позволяют контролировать объем зерна, попадающего в рабочую камеру дробилки за единицу времени. Аэродинамический способ открывает возможности для более эффективного контроля скорости, направления и координат ввода зерновок, но более дорог и конструкционно сложен [12].
В зависимости от положения входного отверстия как принудительную, так и подачу самотеком можно разделить на центральную, боковую, тангенциальную и радиальную.

Разрушение зерновок в рабочей камере молотковых дробилок происходит в результате соударения с активными рабочими органами – молотками и вторичного соударения с пассивными рабочими органами – решетами и деками. Эффективность работы молотков определяют их форма, количество и окружная скорость. Своевременность отвода готового продукта и производительность молотковой дробилки зависит от коэффициента живого сечения решета и площади сепарирующей поверхности [13].

При работе молотковой дробилки в камере измельчения в результате вращения ротора формируются воздушные потоки, вовлекающие частицы раздробленного материала и целые зерновки в движение, создавая этим воздушно-продуктивный слой [14, 15]. В работах, посвященных изучению воздушно-продуктивного слоя, показано, что для молотковых дробилок характерно неравномерное распределение частиц разного размера по камере измельчения.

Для формирования воздушных потоков в камере измельчения на ротор могут дополнительно устанавливаться лопатки или вентилятор, который монтируется в корпус дробилки. На формируемое вентилятором или лопатками ротора давления оказывают влияние форма и геометрические параметры лопаток, их расположение, диаметр и скорость вращения ротора, параметры сепарирующей поверхности [6, 7, 13].

В условиях ГБОУ НГИЭУ была разработана молотковая дробилка с увеличенной сепарирующей поверхностью, рабочая камера которой образована двумя торцевыми и одним периферийным решетами (рисунок 1). В качестве рабочих органов на ротор можно устанавливать четыре молотка, выполненных в виде продольно согнутых стальных пластин (угловые молотки), четыре прямых молотка или комбинацию прямых молотков и угловых лопаток, размещенных между ними [16]. Проведение предварительных исследований показало, что при вращении ротора с угловыми молотками и лопатками в рабочей камере возрастает давление, увеличение которого прямо пропорционально длине угловых молотков. Также вращение угловых и комбинированных рабочих органов приводит к возникновению насосного эффекта и делению всей площади торцевого решета на зоны всасывания и выталкивания воздушного потока. Исходя из этого, можно заключить, что площадь торцевых решет не полностью задействована в эвакуации готового измельченного материала.

С учетом изложенного, цель нашего исследования – изучение влияния вида рабочих органов и площади перекрывания торцевого решета на направления воздушных потоков в камере измельчения и определение рабочей площади торцевого решета.

Условия, материалы и методы исследований. Лабораторная установка состоит из станины с закрепленным на ней электродвигателем, корпуса, внутри которого установлен ротор с рабочими органами, и загрузочного бункера. Внешняя крышка корпуса сделана из прозрачного материала. Ротор выполнен в виде ступицы с внутренним и наружным дисками, между которыми шарнирно крепятся угловые или прямые молотки. В качестве рабочих органов молотковой дробилки на ротор устанавливали четыре молотка, выполненные в виде продольно согнутых стальных пластин (угловые молотки), четыре прямых молотка или комбинацию прямых молотков и угловых лопаток, установленных между ними

Длина угловых молотков составляла 100 мм, в качестве угловых лопаток использовали комплекты продольно согнутых пластин с длиной рабочей части 10 мм и 40 мм.

Для определения направления воздушного потока с внешней стороны торцевого решета исследуемой дробилки были закреплены нити длиной 30 мм. Их распределяли равномерно по всей площади решета на расстоянии
15…30 мм одна от другой (рисунок 3). Наблюдения проводили при частоте вращения ротора 3000 мин
–1.

Для изучения влияния площади перекрывания решета на направление воздушных потоков центральную часть торцевого решета перекрывали дисками диаметром
dд = (0,125..0,5)dр (где dр ‒ диаметр решета).

Анализ и обсуждение результатов исследований. Наблюдения при проведении исследования показали, что при использовании угловых молотков характерно движение воздушных потоков в осевом направлении со следующим распределением: всасывание в камеру измельчения в центральной части торцевого решета и выталкивание по внешней окружности решета. Исходя из этого, всю площадь торцевого решета можно разделить на три части: зона всасывания, зона выталкивания и переходная зона (рисунок 4). Зона всасывания (см. рисунок 4, б) ограничена диаметром d1, переходная зона расположена между диаметрами d1 и d2. Рабочей площадью торцевого решета можно считать только зону выталкивания воздушного потока, которая ограничена диаметрами d2 и dр.

Анализ результатов исследования показал, что использование угловых молотков длиной 100 мм соответствует невысоким значениям рабочей площади торцевого решета и максимальному в эксперименте диаметру зоны всасывания, составляющему 65…81 % от диаметра решета (см. табл.). Это свидетельствует о нерациональности использования таких рабочих органов.

Для прямых молотков характерны минимум осевой составляющей направления движения воздушного потока, наименьшие размеры площади зоны всасывания и рабочей площади. При этом следует отметить, что площадь зоны выталкивания практически не зависит от площади перекрывания торцевого решета, что свидетельствует о том, что изменение направления воздушного потока происходит из-за его столкновения с периферийным решетом, а не благодаря форме молотка.

Максимальная в эксперименте рабочая площадь торцевого решета соответствует использованию комбинированного рабочего органа с длиной угловых лопаток 40 мм без перекрывания решета. Однако стоит отметить, что при этом диаметр зоны всасывания достаточно велик. Увеличение радиуса зоны втягивания воздушного потока, что может приводить к многократной циркуляции воздушно-продуктового слоя через торцевое решето и, как следствие, к переизмельчению продукта. Следовательно, необходимо проведение дальнейшего исследования качества готового продукта, получаемого при работе молотковой дробилки с комбинированными рабочими органами. При перекрывании торцевого решета максимальные размеры рабочей площади соответствуют использованию угловых молотков длиной 10 мм, диаметр зоны всасывания при этом относительно небольшой.

Площадь зоны всасывания увеличивается как по мере роста длины угловых рабочих органов, так и при увеличении площади перекрывания торцевого решета. Рост площади перекрывания торцевого решета во всех случаях приводит к уменьшению рабочей площади решета.

Выводы. В рабочей камере молотковой дробилки с увеличенной сепарирующей поверхностью рационально использование комбинированных рабочих органов, поскольку экспериментально выявлено увеличение при этом рабочей площади торцевых решет. Использование рабочих органов в виде прямых молотков нецелесообразно, так как рабочая площадь торцевых решет при этом минимальна. Также нерационально использование рабочих органов в виде угловых молотков, при котором отмечена максимальная в эксперименте площадь зоны втягивания и малая рабочая площадь торцевых решет.

 

Список литературы

1. Nikkhah A. Optimizing barley grain use by dairy cows: A betterment of cur-rent perceptions // Progress in Food Science and Technology / edited by: Greco A.J. NY: Nova Science Publishers, Inc, 2011. Volume 1. Рр. 165-178.

2. Processing oats grain for cull cows finished in feedlot processamento do grão de aveia para alimentação de vacas de descarte terminadas em confinamento / J. Restle, C. Faturi, L. L. Pascoal, et al. // Ciência Animal Brasileira. 2009. 10(2). Рр. 497-503.

3. Feed uses for barley / J.L. Black, A.M. Tredrea, S.G. Nielsen, et al. // Proceedings of the 12th Australian Barley Technical Symposium. Hobart, Tasmania. 2005.

4. Nikkhah A. Barley grain for ruminants: A global treasure or tragedy // Journal of Animal Science and Biotechnology. 2012. 3(1). Р. 22. DOIhttps://doi.org/10.1186/2049-1891-3-22.

5. Наймушин А.А. Обоснование конфигурации рабочих органов для измельчения зерна // Вестник Алтайского государственного аграрного университета. 2014. № 5 (115). С. 139-144.

6. Коношин И.В., Звеков А.В. Повышение эффективности рабочего процесса молотковых дробилок закрытого типа // Агротехника и энергообеспечение. 2014. № 1 (1). С. 165-174.

7. Бурлуцкий Е.М. Методика производственных испытаний молотковой дробилки закрытого типа с усовершенствованной рабочей камерой // Известия Оренбургского государственного аграрного университета. 2011. №1(29). С. 56-60.

8. Федосеев В.Б., Зацаринная И.А. Стохастический характер образования динамических сводов при установившемся режиме истечения сыпучих материалов из бункеров // Вестник Мичуринского государственного аграрного университета. 2011. № 1(1). С. 196-199.

9. Власенко Д.А., Левченко Э.П. Влияние параметров подачи материала в рабочую зону молотковой дробилки на условия процесса соударения // Сборник научных трудов Донбасского государственного технического университета. 2017. № 8 (51). С. 140-144.

10. Кунаков В.С., Савенков Д.Н, Тимолянов К.А. Энергетический баланс при гравитационном истечении зернового материала из бункера с боковым отверстием / Вестник Донского государственного технического университета. 2013. № 7-8(75). Т. 13. С. 97-105.

11. Яцун С.Ф., Локтионова О.Г., Галицына Т.В. Численное моделирование истечения сыпучего материала из бункера // Известия высших учебных заведений. Машиностроение. 2008. №6. С. 50-56.

12. Елисеев М. С., Елисеев И. И., Рыбалкин Д. А. Теоретическое обоснование параметров работы устройства для ориентированной подачи измельчаемого материала к рабочим органам молоткового измельчителя // Аграрный научный журнал. 2017. № 3. С. 53-55.

13. Баранов Н. Ф., Фарафонов В. Г., Лопатин Л. А. Исследование взаимодействия частиц с рабочими органами молотковой дробилки // Пермский аграрный вестник. 2018. № 3 (23). С. 4-11

14. Бурлуцкий Е.М., Павлидис В.Д., Чкалова М.В. Математические методы определения массового состава воздушно-продуктового слоя в зонах рабочей камеры молотковой дробилки / Известия Оренбургского государственного аграрного университета. 2011. № 1 (29). С. 61-64.

15. Gvozdev A., Yalpachik E. Power-hungryness of process of growing of grain shallow in crusher with vertical rotor // Праці Таврійського державного агротехнологічного університету. 2012. Т. 12. № 4. С. 34-39.

16. Пат. RUS 2658704 Дробилка зерна с увеличенной сепарирующей поверхностью / С.Ю. Булатов, К.Е. Миронов, В.Н. Нечаев и др.; патентообладатель: ГБОУ ВПО НГИЭИ - № 2017114460; заявл. 25.04.2017; опубл. 22.06.2018, Бюл. № 18. - 5 с.

Войти или Создать
* Забыли пароль?