Санкт-Петербург, Россия
Санкт-Петербург, Россия
Санкт-Петербург, Россия
Иркутск, Россия
We have studied the latitude behavior of cosmic ray cutoff rigidity and their sensitivity to Bz and By components of the interplanetary magnetic field and geomagnetic activity indices Dst and Kp for different phases of the November 7–8, 2004 strong magnetic storm. Cutoff rigidities have been calculated using two methods: the spectrographic global survey method in which the cutoff rigidity is determined from observational data, acquired by the neutron monitor network, and the method in which particle trajectories are calculated numerically in a model magnetic field of the magnetosphere. We have found that the sensitivity of observed cutoff rigidities to Dst changes with latitude (threshold rigidity of stations) is in antiphase with changes in the sensitivity to By. During the recovery phase of the storm, the Dst correlation with By is significantly greater than that with Bz, and the Kp correlation with Bz is greater than that with By. The By component is shown to be a predominant driver of the current systems that determine the Dst evolution during the recovery phase.
cutoff rigidity, By, Bz, interplanetary magnetic field, geomagnetic activity indices, magnetic storm phases
1. Antonova O.F., Baisultanova LM.., Belov A.V., Dorman L.I., Yanke V.G. The longitude and latitude dependences of the geomagnetic cutoff rigidity variations during strong magnetic storms. Proc. 21st International Cosmic Ray Conference. January 1990. Adelaide, Australia. 1990, vol. 7, pp. 10-13.
2. Belov A., Baisultanova L., Eroshenko E., Mavromichalaki H., Yanke V., Pchelkin V., Plainaki, C., Mariatos G. Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. J. Geophys. Res. 2005, vol. 110, A09S20. DOI:https://doi.org/10.1029/2005JA011067.
3. Borovsky J.E. Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. J. Geophys. Res. 2014, vol. 119, pp. 5364-5381. DOI:https://doi.org/10.1002/2013JA019607.
4. Borovsky J.E., Birn J. The solar wind electric field does not control the dayside reconnection rate. J. Geophys. Res. Space Physics. 2014, vol. 119, pp. 751-760. DOI:https://doi.org/10.1002/2013JA019193.
5. Borovsky J.E., Shprits Y. Is the Dst index sufficient to define all geospace storms? J. Geophys. Res. 2017, vol. 122, iss. 11, pp. 11543-11547.
6. Burov V.A., Meleshkov Yu.S., Ochelkov Yu.P. The technique of operational evolution of the level of radiation danger due to the cosmic weather disturbance during air travel. Geliogeofizicheskie issledovaniya [Heliogeophysical Res.]. 2014, iss. 7, pp. 61-81. (In Russian).
7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geo-phys. Res. 1975, vol. 80, iss. 31, pp. 4204-4214. DOI:https://doi.org/10.1029/JA080i031p04204.
8. Crooker N.U. Solar and geliospheric geoeffective disturbances. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 1071-1085.
9. Daglis I.A., Thorne R.M., Baumjohann W., Orisini S. The terrestrial ring current: Origin, formation, evolution, and decay. Rev. Geophys. 1999, vol. 37, pp. 407-438.
10. Danilova O.A., Demina I.A., Ptitsyna N.G., Tyasto M.I. Mapping of geomagnetic cutoff rigidity of cosmic rays during the main phase of the magnetic storm of November 20, 2003. Geomagnetism and Aeronomy. 2019, vol. 59, no. 2. pp. 147-154. DOI:https://doi.org/10.1134/S0016793219020051.
11. Dorman L.I. Elementary Particle and Cosmic Ray Physics. Elsevier, New York, 1963. 456 p.
12. Dvornikov V.M., Sdobnov V.E. Variations in geomagnetic cutoff rigidity of cosmic rays in some regions of Asia during the 2003 extreme events. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2009, iss.14, pp. 23-26. (In Russian).
13. Dvornikov V.M., Kravtsova M.V., Sdobnov V.E. Diagnostics of the electromagnetic characteristics of the interplanetary medium based on cosmic ray effects. Geomagnetism and Aeronomy. 2013, vol. 53, iss. 4, pp. 430-440.
14. Dubyagin S., Ganushkina N., Kubyshkina M., Liemohn M. Contribution from different current systems to SYM and ASY midlatitude indices. J. Geophys. Res. 2014, vol. 119, pp. 7243-7263. DOI:https://doi.org/10.1002/2014JA020122
15. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, vol. 6, pp. 47-48. DOI:https://doi.org/10.1103/PhysRevLett.6.47.
16. Feldstein Y.I. Starkov G.V. Dynamics of auroral belt and polar geomagnetic disturbances. Planetary and Space Sci. 1967, vol. 15, iss. 2, pp. 209-229. DOI:https://doi.org/10.1016/0032-0633(67)90190.
17. Flueckiger E.O., Shea M.A., Smart D.F. On the latitude dependence of cosmic ray cutoff rigidity variations during the initial phase of a geomagnetic storm. Proc. 20th International Cosmic Ray Conference. Moscow. 1987, vol. 4, pp. 216.
18. Gosling J.T., Baker D.N., Bame S.J., Feldman W.C., Zwickl R.D., Smith E. J. North-south and dawn-dusk plasma asymmetries in the distant tail lobes: ISEE 3. J. Geophys. Res.: Space Phys. 1985, vol. 90, iss. A7, pp. 6354-6360. DOI:https://doi.org/10.1029/JA090iA07p06354.
19. Iucci N., Levitin A.E., Belov A.V., Eroshenko E.A., Ptitsyna N.G., Villoresi G., et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3. S01001. DOI:https://doi.org/10.1029/2003SW000056.
20. Kress B.T., Hudson M.K., Selesnick R.S., Mertens C.J., Engel M. Modeling geomagnetic cutoffs for space weather applications. J. Geophys. Res. 2015, vol. 120, no. 7, pp. 5694-5702. DOI:https://doi.org/10.1002/2014JA020899.
21. Kryakunova O.N. Dvornikov V.M., Sdobnov V.E., Variations of the cosmic ray cutoff rigidity in Irkutsk and Almaty during the extreme events in 2003. Proc. 31st International Cosmic Ray Conference. July 2009. Lod´z., pp. 3414-3418.
22. Kudela K., Bucik R. Low energy cosmic rays and the disturbed magnetosphere. Proc. 2nd International Symposium SEE-2005. Nor-Amberd, Armenia. 2005, pp. 57-62. https://arxiv.org/pdf/1303.4052.pdf.
23. Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res. 2001, vol. 106, pp. 30011-30022. DOI:https://doi.org/10.1029/2000JA000212.
24. Liemohn M.W., Kozyra J.U., Thomsen M.F., Roeder J.L., Lu G., Borovsky J.E., Cayton T.E. Dominant role of the asymmetric ring current in producing stormtime Dst*. J. Geo-phys. Res. 2001, vol. 106, A6, pp. 10,883-10,904. DOI:https://doi.org/10.1029/2000JA000326.
25. Newel P.T., Sotirelis T., Liou K., Meng C.-I., Rich F.J. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 2007, vol. 112, A01206. DOI: 10.1029/ 2006JA012015.
26. Ohtani S., Nose M., Rostoker G., Singer H., Lui A.T.Y., Nakmura M. Storm-substorm relationship: Contribution of the tail current to Dst. J. Geophys. Res. 2001, vol. 106, A10, pp. 21199-21209. DOI:https://doi.org/10.1029/2000JA000400.
27. Park K.S., Ogino T., Walke R.J. On the importance of antiparallel reconnection when the dipole tilt and IMF By are nonzero. J. Geophys. Res. 2006, vol. 111, A05202. DOI:https://doi.org/10.1029/2004JA010972.
28. Potemra T.A. Birkeland currents in the Earth's magnetosphere. Astrophys. Space Sci. 1988, vol. 144, no. 1-2, pp. 155-169.
29. Ptitsyna N. G., Danilova O. A., Tyasto M. I., Sdobnov V.E. Influence of the Solar Wind and Geomagnetic Activity Parameters on Variations in the Cosmic Ray Cutoff Rigidity during Strong Magnetic Storms. Geomagnetism and Aeronomy. 2019, vol. 59, no. 5. pp. 569-577. DOI:https://doi.org/10.1134/S0016793219050098.
30. Rawat R., Alex S., Lakhina G.S. Geomagnetic storm characteristics under varied interplanetary conditions. Bull. Astron. Soc. India. 2007, vol. 35, pp. 499-509.
31. Reeves G.D., McAdams K.L., Friedel R.H.W., O’Brien T.P. Acceleration and loss of relativistic electrons during geo-magnetic storms. Geophys. Res. Lett. 2003, vol. 30, no. 10, pp. 1529-1544. DOI:https://doi.org/10.1029/2002GL016513.
32. Russell C.T. The solar wind interaction with the Earth's magnetosphere: A tutorial. IEEE Trans. Plasma Sci. 2000, vol. 28, no. 6, pp. 1818-1830. DOI:https://doi.org/10.1109/27.902211.
33. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 1965, vol. 70, pp. 4117-4130.
34. Siscoe G.L., McPherron R.L., Jordanova V.K. Diminished contribution of ram pressure to Dst during magnetic storms. J. Geophys. Res. 2005, vol. 110, pp. A12227. DOI:https://doi.org/10.1029/2005JA011120.
35. Thomsen M.F. Why Kp is such a good measure of magneto-spheric convection. Space Weather. 2004, vol. 2, S11044. DOI:https://doi.org/10.1029/2004SW000089.
36. Tsurutani B.T., Echer E., Guarnieri F.L., Kozyra J.U. CAWSES November 7-8, 2004, superstorm: Complex solar and interplanetary features in the post-solar maximum phase. Geophys. Res. Lett. 2008, vol. 35, no. 6, pp. 1-6. DOI:https://doi.org/10.1029/2007GL031473.
37. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 2003, vol. 108, A5, pp.1209-1224.
38. Turner N.E., Baker D.N., Pulkkinen T.I., McPherron R.L. Evaluation of the tail current contribution to Dst. J. Geophys. Res. 2000, vol. 105. iss. A3, pp. 5431-5439. DOI:https://doi.org/10.1029/1999JA000248.
39. Tyasto M.I., Danilova O.A., Ptitsyna N.G., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the great geo-magnetic storm of November 2004. Adv. Space Res. 2013, vol. 51, iss. 7, pp. 1230-1237.
40. Yermolaev Yu.I., Zeleny L.M., Zastenker G.N. Petrukovich A.A., Yermolaev M.Yu., Nikolaeva N.S., et al. A year later: Solar, heliospheric and magnetospheric disturbances in November 2004. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2005, vol. 45, iss. 6, pp. 681-719. (In Russian).