Воздействие космической погоды на наземные технологические системы
Рубрики: ОБЗОРЫ
Аннотация и ключевые слова
Аннотация (русский):
Предлагаемый впервые в отечественной научной литературе обзор посвящен различным аспектам проблемы воздействия космической погоды (КП) на наземные технологические системы. Особое внимание уделено нарушениям в работе линий электропередач (ЛЭП), железнодорожной автоматики и трубопроводов, вызванным геоиндуцированными токами (ГИТ) при возмущениях геомагнитного поля. В обзоре даны сведения об основных характеристиках вариабельности геомагнитного поля и быстрых вариациях поля при различных проявлениях КП. Излагаются основы моделирования возмущений геоэлектрического поля, основанные на алгоритмах магнитотеллурического зондирования. Рассмотрены подходы к оценке возможных экстремальных величин ГИТ. Собраны сведения об экономических эффектах КП и ГИТ. Рассказано о современном состоянии и перспективах прогноза КП, а также об оценке риска для технологических систем при воздействии ГИТ. Следует подчеркнуть, что хотя в космической геофизике активно разрабатываются различные модели предсказания интенсивности магнитных бурь и вызванных ими геомагнитных возмущений по наблюдениям межпланетной среды, эти модели не могут быть непосредственно применены для предсказания интенсивности и положения ГИТ, так как описание вариабельности геомагнитного поля требует разработки отдельных моделей. Выявление тонкой структуры быстрых геомагнитных вариаций во время бурь и суббурь и вызываемых ими всплесков ГИТ оказалось важным не только с практической точки зрения, но и для развития фундаментальных представлений о динамике околоземного космического пространства (ОКП). В отличие от узкоспециальных работ по геофизическим аспектам вариаций геомагнитного поля и инженерным аспектам воздействия ГИТ на работу промышленных трансформаторов обзор рассчитан на более широкую научно-техническую аудиторию, без потери научного уровня изложения. Иными словами, геофизическая часть написана для инженеров-энергетиков, а инженерная — для геофизиков. Несмотря на явную прикладную направленность рассматриваемых исследований, эти работы не сводятся к чисто инженерному применению результатов космической геофизики для расчета возможных рисков для технологических систем, а ставят и ряд принципиальных научных проблем.

Ключевые слова:
космическая погода, геоиндуцированные токи, линии электропередач, трансформаторы, трубопроводы, железнодорожная автоматика, магнитосферные бури, суббури, Pi3/Ps6 пульсации
Список литературы

1. Арриллага Дж., Брэдли Д., Боджер П. Гармоники в электрических системах. М.: Энергоатомиздат, 1990. 320 с.

2. Баранник М.Б., Данилин А.Н., Катькалов Ю.В. и др. Система регистрации геоиндуцированных токов в нейтралях силовых автотрансформаторов. Приборы и техника эксперимента. 2012. № 1. С. 118-123.

3. Белаховский В.Б., Пилипенко В.А., Сахаров Я.А., Селиванов В.Н. Характеристики вариабельности геомагнитного поля для изучения воздействия магнитных бурь и суббурь на электроэнергетические системы. Физика Земли. 2018. № 1. С. 173-185.

4. Бернгардт О.И. Влияние факторов космической погоды на работу радиосредств. Солнечно-земная физика. 2017. Т. 3, № 3. С. 40-60. DOI:https://doi.org/10.12737/szf-33201705.

5. Вахнина В.В. Моделирование режимов работы силовых трансформаторов систем электроснабжения при геомагнитных бурях. Тольятти: Издательство ТГУ, 2012. 103 c.

6. Вахнина В.В., Кретов Д.А. Математическая модель силового трансформатора при воздействии геомагнитных бурь на системы электроснабжения. Вектор Науки Тольяттинского государственного университета. 2012a. № 4. C. 141-144.

7. Вахнина В.В., Кретов Д.А. Определение допустимых уровней геоиндуцированных токов для обеспечения работоспособности силовых трансформаторов при геомагнитных бурях. Интернет-журнал «НАУКОВЕДЕНИЕ». 2012б. № 4. C. 1-7.

8. Вахнина В.В., Кузнецов В.А. Разработка системы мониторинга геоиндуцированных токов в нейтралях силовых трансформаторов при геомагнитных бурях. Вектор науки Тольяттинского государственного университета. 2013. № 2. C. 108-111.

9. Вахнина В.В., Черненко А.Н., Кузнецов В.А. Влияние геоиндуцированных токов на насыщение магнитной системы силовых трансформаторов. Вектор Науки Тольяттинского государственного университета. 2012. № 3. С. 65-69.

10. Вахнина В.В., Кувшинов А.А., Шаповалов В.А. и др. Механизмы воздействия квазипостоянных геоиндуцированных токов на электрические сети. М.: Инфра-инженерия, 2018. 256 с.

11. Воробьев В.Г., Сахаров Я.А., Ягодкина О.И. и др. Геоиндуцированные токи и их связь с положением западной электроструи и границами авроральных высыпаний. Труды Кольского научного центра РАН. 2018. Т. 5, Вып. 4. С. 16-28. DOI:https://doi.org/10.25702/KSC.2307-5252.2018.9.5.16-28.

12. Воробьев А.В., Пилипенко В.А., Сахаров Я.А., Селиванов В.Н. Статистические взаимосвязи вариаций геомагнитного поля, аврорального электроджета и геоиндуцированных токов. Солнечно-земная физика. 2019. Т. 5, № 1. С. 48-58. DOI:https://doi.org/10.12737/szf-51201905.

13. Воробьев А.В., Пилипенко В.А., Еникеев Т.А., Воробьева Г.Р. Геоинформационная система для анализа динамики экстремальных геомагнитных возмущений по данным наблюдений наземных станций. Компьютерная оптика. 2020a. Т. 44, № 5. С. 782-790. DOI:https://doi.org/10.18287/2412-6179-CO-707.

14. Воробьев А.В., Пилипенко В.А., Решетников А.Г. и др. Веб-ориентированная визуализация геофизических параметров в области аврорального овала. Научная визуализация. 2020б. Т. 12, № 3. С. 108-118. DOI:https://doi.org/10.26583/sv.12.3.10.

15. Гуревич В.И. Проблема электромагнитных воздействий на микропроцессорные устройства релейной защиты. Компоненты и технологии. 2010. № 2. C. 46-51.

16. Гуревич В.И. Уязвимости микропроцессорных реле защиты: проблемы и решения. М.: Инфра-инженерия, 2014. 256 с.

17. Гусев Ю.П., Лхамдондог А., Монаков Ю.В. и др. Оценка воздействия геоиндуцированных токов на пусковые режимы силовых трансформаторов. Электрические станции. 2020. № 2. С. 54-59.

18. Демьянов В.В., Ясюкевич Ю.В., Космическая погода: Факторы риска для глобальных навигационных спутниковых систем. Солнечно-земная физика. 2021. Т. 7, № 2. С. 30-52. DOI:https://doi.org/10.12737/szf-72202104.

19. Ефимов Б., Сахаров Я., Селиванов В. Геомагнитные штормы. Исследование воздействий на энергосистему Карелии и Кольского полуострова. Новости электротехники. 2013. № 2. С. 80.

20. Ивонин А.А. Влияние геомагнитного поля Земли на защиту от коррозии МГ ООО «Газпром Трансгаз Ухта». Коррозия Территории Нефтегаз. 2015. № 1. С. 88-89.

21. Карташев И.И. Динь-Дык Н. Влияние характеристик намагничивания трансформатора на спектр генерируемых им высших гармоник. Вестник МЭИ. 2007. C. 56-63.

22. Касинский В.В., Птицына Н.Г., Ляхов Н.Н. и др. Влияние геомагнитных возмущений на работу систем железнодорожной автоматики и телемеханики. Геомагнетизм и аэрономия. 2007. Т. 47, № 5. С. 714-718.

23. Кобелев А.В., Зыбин А.А. Современные проблемы высших гармоник в городских системах электроснабжения. Вестник ТГТУ. 2011. Т. 17, № 1. C. 181-191.

24. Муллаяров В.А., Козлов В.И., Григорьев Ю.М., Ромащенко Ю.А. Индуцированный в газопроводе ток от большого магнитного возмущения 21.01.05. Наука и образование. 2006. № 1. С. 53-55.

25. Панюшкин Г.Н. Кинетика геомагнитного влияния на подземную коррозию магистральных трубопроводов. Трубопроводный транспорт. 2014. № 3-4. С. 34-35.

26. Пилипенко В.А., Браво М., Романова Н.В. и др. Геомагнитный и ионосферный отклики на межпланетную ударную волну 17 марта 2015 г. Физика Земли. 2018. № 5. С. 61-80. DOI:https://doi.org/10.1134/S0002333718050125.

27. Писаренко В.Ф., Родкин М.В. Распределения с тяжелыми хвостами: приложения к анализу катастроф. М.: ГЕОС, 2007. 242 с.

28. Сахаров Я.А., Кудряшова Н.В., Данилин А.Н. и др. Влияние геомагнитных возмущений на работу железнодорожной автоматики. Вестник МИИТ. 2009. Вып. 21. С. 107-111.

29. Сахаров Я.А., Селиванов В.Н., Билин В.А., Николаев В.Г. Экстремальные величины геоиндуктированных токов в региональной энергосистеме. «Physics of Auroral Phenomena», Proc. XLII Annual Seminar, Apatity. 2019. С. 5-56. DOI:https://doi.org/10.25702/KSC.2588-0039.2019.42.53-56.

30. Сахаров Я.А., Ягова Н.В., Пилипенко В.А. Геомагнитные пульсации Pc5/Pi3 и геоиндуцированные токи. Изв. РАН, серия физическая. 2021. Т. 85, № 3. С. 445-450. DOI:https://doi.org/10.31857/s0367676521030236.

31. Селиванов В.Н., Баранник М.Б., Данилин А.Н. и др. Исследование влияния геомагнитных возмущений на гармонический состав токов в нейтралях автотрансформаторов. Труды КНЦ РАН: Энергетика. Апатиты: Изд-во Кольского научного центра РАН, 2012. Вып. 4. С. 60-68.

32. Селиванов В.Н., Данилин А.Н., Колобов В.В., Сахаров Я.А., Баранник М.Б. Результаты длительных регистраций токов в нейтралях силовых трансформаторов. Труды КНЦ РАН: Энергетика. Апатиты: Изд-во Кольского научного центра РАН, 2010. Вып. 1. С. 84-90.

33. Селиванов В.Н., Баранник М.Б., Билин В.А. и др. Исследование гармонического состава тока в нейтрали трансформатора в периоды геомагнитных возмущений. Труды Кольского научного центра РАН. 2017. № 1-14 (8). С. 43-52.

34. Сивоконь В.П., Сероветников А.С. Геомагнитно-индуцированные токи в электрической сети Камчатки. Электро. 2013. C. 19-22.

35. Сивоконь В.П., Сероветников А.С. Вариации спектра тока трансформатора, подверженного воздействию геомагнитно-индуцированных токов. Электро. 2015. № 1. C. 18-21.

36. Сивоконь В.П., Сероветников А.С., Писарев А.В. Высшие гармоники как индикатор геомагнитно-индуцированных токов. Электро. 2011. C. 44-51.

37. Сушко В.А., Косых Д.А. Геомагнитные штормы. Угроза национальной безопасности России. Новости электротехники. 2013. № 4. C. 25-28.

38. Трищенко Л.Д. Геомагнитные возмущения и системы электроснабжения и проводной связи. Плазменная гелиофизика. М.: Физматлит, 2008. Т. 2. С. 213-219.

39. Успенский М.И. Основные понятия и пути влияния геомагнитных штормов на электроэнергетическую систему. Известия Коми научного центра УрО РАН. 2017. № 1. С. 72-81.

40. Чинкин В.Е., Соловьев А.А., Пилипенко В.А. Выделение вихревых токовых структур в ионосфере и оценка их параметров по наземным магнитным данным. Геомагнетизм и аэрономия. 2020. Т. 60, № 5. С. 588-599. DOI:https://doi.org/10.31857/S001679402005003X.

41. Ягова Н.В., Пилипенко В.А., Федоров Е.Н., и др. Геоиндуцированные токи и космическая погода: Pi3 пульсации и экстремальные значения производных по времени горизонтальных компонент геомагнитного поля. Физика Земли. 2018. № 5. С. 89-103.

42. Albertson V.D. Geomagnetic disturbance effects on power systems. IEEE Transactions on Power Delivery. 1992. Vol. 8, iss. 3. P. 1206-1216. DOI:https://doi.org/10.1109/61.252646.

43. Anderson C.W., Lanzerotti L.J., Maclennan C.G. Outage of the L-4 system and the geomagnetic disturbances of August 4, 1972. Bell System. Technical. J. 1974. Vol. 53, iss. 9. P. 1917-1837.

44. Apatenkov S.V., Sergeev V.A., Pirjola R., Viljanen A. Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Ann. Geophys. 2004. Vol. 22. P. 63-72.

45. Apatenkov S.V., Pilipenko V.A., Gordeev E.I., et al. Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophys. Res. Lett. 2020. Vol. 47, iss. 6. e2019GL086677. DOI:https://doi.org/10.1029/2019GL086677.

46. Bedrosian P.A., Love J.J. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett. 2015. Vol. 42, no. 23. P. 10,160-10,170. DOI:https://doi.org/10.1002/2015GL066636.

47. Beggan C.D. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth, Planets and Space. 2015. Vol. 67, no. 24. DOI: 10.1186/ s40623-014-0168-9.

48. Beggan C.D., Beamish D., Richards A., et al. Prediction of extreme geomagnetically induced currents in the UK high-voltage network. Space Weather. 2013. Vol. 11, iss. 7. P. 407-419. DOI:https://doi.org/10.1002/swe.20065.

49. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Lorentzen D.A. Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012. Earth, Planets and Space. 2017. Vol. 69, no.1. DOI:https://doi.org/10.1186/s40623-017-0696-1.

50. Belakhovsky V., Pilipenko V., Engebretson M., et al. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J. Space Weather and Space Climate. 2019. Vol. 9, no. A18. DOI:https://doi.org/10.1051/swsc/2019015.

51. Béland J., Small K. Space weather effects on power transmission systems: the cases of Hydro-Québec and Transpower New Zealand Ltd. NATO Science Series II: Mathematics, Physics and Chemistry. 2005. Vol. 176. P. 287-299.

52. Belov A.V., Gaidash S.P., Kanonidi K.D., et al. Operative center of the geophysical prognosis in Izmiran. Ann. Geophys. 2005. Vol. 23, iss. 9. P. 3163-3170. DOI:https://doi.org/10.5194/angeo-23-3163-2005.

53. Bernabeu E.E. Modeling geomagnetically induced currents in the Dominion Virginia Power using extreme 100 year geoelectric field scenarios, Pt 1. IEEE Transactions on Power Delivery. 2013. Vol. 28, iss. 1. P. 516-523.

54. Bolduc L. GIC observations and studies in the Hydro-Quebec power system. J. Atmos. Terr. Phys. 2002. Vol. 64, iss. 16. P. 1793-1802. DOI:https://doi.org/10.1016/S1364-6826(02)00128-1.

55. Bolduc L., Langlois P., Boteler D., Pirjola R. A study of geoelectromagnetic disturbances in Quebec. 1. General results. IEEE Transactions on Power Delivery. 1998. Vol. 13, iss. 4. P. 1251-1256. DOI:https://doi.org/10.1109/61.714492.

56. Bolduc L., Langlois P., Boteler D., Pirjola R. A study of geoelectromagnetic disturbances in Quebec, 2. Detailed analysis of a large event. IEEE Transactions on Power Delivery. 2000. Vol. 15, iss. 1. P. 272-278.

57. Bonner L.R., Schultz A. Rapid predictions of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors. Space Weather. 2017. Vol. 15. P. 204-227. DOI:https://doi.org/10.1002/2016SW001535.

58. Boteler D.H. Distributed-source transmission line theory for electromagnetic induction studies. Proc. the 12th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility. Zürich, Switzerland, 1997. P. 401-408.

59. Boteler D.H. Assessment of geomagnetic hazard to power systems in Canada. Natural Hazard. 2001. Vol. 23, no. 2-3. P. 101-120.

60. Boteler D.H. A new versatile method for modelling geomagnetic induction in pipelines. Geophysical Journal International. 2013. Vol. 193. P. 98-109.

61. Boteler D.J., Cookson V.J. Telluric currents and their effects on pipelines in the Cook Strait region of New Zealand. Materials Performance. 1986. Vol. 25, no. 3. P. 27-32.

62. Boteler D.H., Pirjola R.J. The complex image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet. Geophysical J. International. 1998. Vol. 132. P. 31-40.

63. Boteler D.H., Jansen van Beek G. August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage. Geophys. Res. Lett. 1999. Vol. 26, no. 5. P. 577-580.

64. Boteler D.H., Trichtchenko L. Telluric influence on pipelines. Oil and Gas Pipelines: Integrity and Safety Handbook. 2015. P. 275-285.

65. Boteler D.H., Pirjola R.J. Modeling geomagnetically induced currents. Space Weather. 2017. Vol. 15. P. 258-276. DOI:https://doi.org/10.1002/2016SW001499.

66. Boteler D.H., Pirjola R.J. Numerical calculation of geoelectric fields that affect critical infrastructure. International Journal of Geosciences. 2019. Vol. 10. P. 930-949.

67. Boteler D.H., Shier R.M., Watanabe T., Horita R.E. Effects of geomagnetically induced currents in the BC Hydro 500 kV system. IEEE Transactions on Power Delivery. 1989. Vol. 4, no. 1. P. 818-823.

68. Boteler D.H., Pirjola R.J., Nevalinna H. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv. Space. Res. 1998. Vol. 22. P. 17-27.

69. Boteler D.H., Pirjola R., Trichtchenko L. On calculating the electric and magnetic fields produced in technological systems at the Earth’s surface by a “wide” electrojet. J. Atmos. Solar-Terr. Phys. 2000. Vol. 14. P. 1311-1315.

70. Bozoki B. The effects of GIC on protective relaying. IEEE Transactions on Power Delivery. 1996. Vol. 11. P. 725-739.

71. Brasse H., Junge A. The influence of geomagnetic variations on pipelines and an application for large-scale magnetotelluric depth sounding. J. Geophys. 1984. Vol. 55, no. 1. P. 31-36.

72. Campbell W.H. Induction of auroral zone electric currents within Alaska pipeline. Pure and Applied Geophysics. 1978. Vol. 116. P. 1143-1173.

73. Campbell W.H. Observation of electric currents in the Alaska oil pipeline resulting from auroral electrojet current sources. Geophys. J. Royal Astron. Soc. 1980. Vol. 61. P. 437-449.

74. Campbell W.H., Zimmerman J.E. Induced Electric Currents in the Alaska Oil Pipeline Measured by Gradient Fluxgate and SQUID Magnetometers. IEEE Transactions on Geoscience and Remote Sensing. 1980. Vol. GE-18, no. 3. P. 244-250. DOI:https://doi.org/10.1109/TGRS.1980.4307498.

75. Carter B.A., Yizengaw E., Pradipta R., et al. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys. Res. Lett. 2015. Vol. 42, iss. 16. P. 6554-6559. DOI:https://doi.org/10.1002/2015GL065060.

76. Chinkin V.E., Soloviev A.A., Pilipenko V.A., et al. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data. J. Atmos. Solar-Terr. Phys. 2021. Vol. 212, 105514. DOI:https://doi.org/10.1016/j.jastp.2020.105514.

77. Cid C., Saiz E., Guerrero A., et al. A Carrington-like geomagnetic storm observed in the 21st century. J. Space Weather and Space Climate. 2015. Vol. 5, no. A16. DOI: 10.1051/ Swsc/2015017.

78. Clilverd M.A., Rodger C.J., Brundell J.B., et al. Long-lasting geomagnetically induced currents and harmonic distortion observed in New Zealand during the 7-8 September 2017 disturbed period. Space Weather. 2018. Vol. 16, iss.6. P. 704-717. DOI:https://doi.org/10.1029/2018SW001822.

79. Coles R.L., Lam H.-L. Geomagnetic forecasting in Canada: A review. Physics in Canada. 1998. Vol. 54. P. 327-331.

80. Dimmock A.P., Rosenqvist L., Hall J.O., et al. The GIC and geomagnetic response over Fennoscandia to the 7-8 September 2017 geomagnetic storm. Space Weather. 2019. Vol. 17, iss. 7. P. 989-1010. DOI:https://doi.org/10.1029/2018SW002132.

81. Divett T., Ingham M., Beggan C.D., et al. Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island’s electrical transmission network. Space Weather. 2017. Vol. 15, iss.10. P. 1396-1412. DOI:https://doi.org/10.1002/2017SW001697.

82. Divett T., Richardson G.S., Beggan C.D., et al. Transformer level modeling of geomagnetically induced currents in New Zealand’s South Island. Space Weather. 2018. Vol. 16, iss. 6. P. 718-735. DOI:https://doi.org/10.1029/2018SW001814.

83. Doumbia V., Boka K., Kouassi N., et al. Induction effects of geomagnetic disturbances in the geoelectric field variations at low latitudes. Ann. Geophys. 2017. Vol. 35, iss. 1. P. 39-51. DOI:https://doi.org/10.5194/angeo-35-39-2017.

84. Eastwood J.P., Biffis E., Hapgood M.A., et al. The Economic Impact of Space Weather: Where Do We Stand? Risk Analysis. 2017. Vol. 37, iss. 2. P. 206-218. DOI:https://doi.org/10.1111/risa.12765.

85. Engebretson M.J., Steinmetz E.S., Posch J.L., et al. Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple-instrument observations. J. Geophys. Res. 2019. Vol. 124, no. 9. P. 7459-7476. DOI:https://doi.org/10.1029/2019JA026797.

86. Erinmez I.A., Kappenman J.G., Radasky W.A. Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Terr. Phys. 2002. Vol. 64. P. 743-756.

87. Eroshenko E.A., Belov A.V., Boteler D., et al. Effects of strong geomagnetic storms on Northern railways in Russia. Adv. Space Res. 2010. Vol. 46, iss. 9. P. 1102-1110. DOI: 10.1016/ j.asr.2010.05.017.

88. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure. London: Royal Academy of Engineering, 2013. 70 p.

89. Fernberg P.A., Samson C., Boteler D.H., et al. Earth conductivity structures and their effects on geomagnetic induction in pipelines. Ann. Geophys. 2007. Vol. 25, iss. 1. P. 207-218. DOI:https://doi.org/10.5194/angeo-25-207-2007.

90. Fiori R.A.D., Boteler D.H., Gillies D.M. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather. 2014. Vol. 12, P. 76-91. DOI:https://doi.org/10.1002/2013SW000967.

91. Forbes K.F. Space weather and the electricity market. Space Weather. 2004. Vol. 2, iss. 10, S10003.

92. Forbes K.F., St. Cyr O.C. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids. Space Weather. 2008. Vol. 6, iss. 10. S10003. DOI:https://doi.org/10.1029/2007SW000350.

93. Gaunt C.T. Why space weather is relevant to electrical power systems. Space Weather. 2016. Vol. 14, iss. 1. P. 2-9. DOI:https://doi.org/10.1002/2015SW001306.

94. Gaunt C.T., Coetzee G. Transformer failure in regions incorrectly considered to have low GIC-risks. IEEE Power Tech. 2007, Conference Paper 445, Lausanne, July, P. 807-812.

95. Girgis R., Vedante K. Impact of GICs on Power Transformers: Overheating is not the real issue. Electrification Magazine, IEEE. 2015. Vol. 3. P. 8-12. DOI:https://doi.org/10.1109/MELE. 2015.2480355.

96. Gleisner H., Lundstedt H. A neural network-based local model for prediction of geomagnetic disturbances. J. Geophys. Res. 2001. Vol. 106. P. 8425-8434.

97. Guillon S., Toner P., Gibson L., Boteler D.A. Colorful blackout: the havoc caused by auroral electrojet generated magnetic field variations in 1989. IEEE Power and Energy. 2016. P. 59-71. DOI:https://doi.org/10.1109/MPE.2016.2591760.

98. Gummow R., Eng P. GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Solar-Terr. Phys. 2002. Vol. 64, iss. 16. P. 1755-1764. DOI:https://doi.org/10.1016/s1364-6826(02)00125-6.

99. Hakkinen L., Pirjola R. Calculation of electric and magnetic fields due to an electrojet current system above a layered Earth. Geophysica. 1986. Vol. 22. P. 31-44.

100. Hapgood M.A. Toward a scientific understanding of the risk from extreme space weather. Adv. Space Res. 2011. Vol. 47. P. 2059-2072.

101. Hapgood M. Prepare for the coming space weather storm. Nature. 2012. Vol. 484. P. 311-313.

102. Hapgood M. The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather. 2019. Vol. 17. P. 950-975. DOI:https://doi.org/10.1029/2019SW002195.

103. Hejda P., Bochnicek J. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during October-November 2003. Ann. Geophys. 2005. Vol. 23. P. 3089-3093.

104. Henriksen J.F., Elvik R., Gransen L. Telluric currents corrosion on buried pipelines. Proc. the 8th Scandinavian Corrosion Congress. Helsinki, Finland, 1978. Vol. 2. P. 167-176.

105. Huttunen K.E., Kilpua S.P., Pulkkinen A., et al. Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather. 2008. Vol. 6, iss. 10. S10002. DOI:https://doi.org/10.1029/2007SW000374.

106. Ingham M., Rodger C.J. Telluric field variations as drivers of variations in cathodic protection potential on a natural gas pipeline in New Zealand. Space Weather. 2018. Vol. 16. P. 1396-1409. DOI:https://doi.org/10.1029/2018SW001985.

107. Ingham M., Rodger C.J., Divett T., et al. Assessment of GIC based on transfer function analysis. Space Weather. 2017. Vol. 15, iss. 12. P. 1615-1627. DOI:https://doi.org/10.1002/2017SW001707.

108. Ivannikova E., Kruglyakov M., Kuvshinov A., et al. Regional 3D modeling of ground electromagnetic field due to realistic geomagnetic disturbances. Space Weather. 2018. Vol. 16, iss. 5. P. 476-500. DOI:https://doi.org/10.1002/2017SW001793.

109. Jonas S., McCarron E.D. Recent U.S. policy developments addressing the effects of geomagnetically induced currents. Space Weather. 2015. Vol. 13, iss. 11. P. 730-733. DOI:https://doi.org/10.1002/2015SW001310.

110. Kappenman J.G. Geomagnetic storms and their impact on power systems. IEEE Power Engineering Review. 1996. P. 5-8.

111. Kappenman J.G. Systemic failure on a grand scale: The 14 August 2003 North American blackout. Space Weather. 2003. Vol. 1, iss. 2. DOI:https://doi.org/10.1029/2003SW000027.

112. Kappenman J.G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather. 2005. Vol. 3, iss.8. SO8C01. DOI:https://doi.org/10.1029/2004SW000128.

113. Kappenman J.G. Geomagnetic storms and their impact on the US power grid. Meta-R-319 Report, 2010.

114. Kappenman J.G., Albertson V.D., Mohan N. Current transformer and relay performance in the presence of geomagnetically induced currents. IEEE Transactions on Power Systems. 1981. Vol. PAS-100, iss. 3. P. 1078-1088.

115. Kataoka R., Pulkkinen A. Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating regions. J. Geophys. Res. 2008. Vol. 113, iss. A3. A03S12. DOI:https://doi.org/10.1029/2007JA012487.

116. Kelbert A., Balch C.C., Pulkkinen A., et al. Methodology for time domain estimation of storm time geoelectric fields using the 3D magnetotelluric response tensors. Space Weather. 2017. Vol. 15, iss. 7. P. 874-894. DOI:https://doi.org/10.1002/2017SW001594.

117. Kelly G.S., Viljanen A., Beggan C.D., Thomson A.W.P. Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather. 2017. Vol. 15. P. 99-114. DOI:https://doi.org/10.1002/2016SW001469.

118. Khanal K., Adhikari B., Chapagain N.P., Bhattarai B. HILDCAA-related GIC and possible corrosion hazard in underground pipelines: A comparison based on wavelet transform. Space Weather. 2019. Vol. 17, iss. 2. P. 238-251. DOI:https://doi.org/10.1029/2018SW001879.

119. Knipp D.J. Synthesis of Geomagnetically Induced Currents: Commentary and Research. Space Weather. 2015. Vol. 13, iss. 11. P. 727-729. DOI:https://doi.org/10.1002/2015SW001317.

120. Korja T., Engels M., Zhamaletdinov A.A., Kovtun A.A. Crustal conductivity in Fennoscandia - a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth, Planets and Space. 2002. Vol. 54. P. 535-558. DOI:https://doi.org/10.1186/BF03353044

121. Kozyreva O.V., Pilipenko V.A., Belakhovsky V.V., Sakharov Ya.A. Ground geomagnetic field and GIC response to March 17, 2015, storm. Earth, Planetary and Space. 2018. Vol. 70, no. 157. DOI:https://doi.org/10.1186/s40623-018-0933-2.

122. Kozyreva O., Pilipenko V., Sokolova E., Epishkin D. Geomagnetic and telluric field variability as a driver of geomagnetically induced currents. Springer Proc. in Earth and Environmental Sciences “Problems of Geocosmos-2018”. Springer Nature Switzerland, 2019. P. 297-307. DOI:https://doi.org/10.1007/978-3-030-21788-4_26.

123. Kozyreva O., Pilipenko V., Krasnoperov R., Baddeley L.J. Fine structure of substorm and geomagnetically induced currents. Ann. Geophys. 2020. Vol. 63, no. 2. GM219. DOI:https://doi.org/10.4401/ag-8198.

124. Krausmann E., Andersson E., Russell T., Murtagh W. Space Weather and Rail: Findings and Outlook. Joint Research Centre Report. JRC98155. Luxembourg, Publications Office of the European Union, 2015. DOI:https://doi.org/10.2788/211456.

125. Kuvshinov A. 3-D global induction in the oceans and solid Earth: Recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric, and oceanic origin. Survey in Geophysics. 2008. Vol. 29, iss. 2. P. 139-186. DOI:https://doi.org/10.1007/s10712-008-9045-z.

126. Kuvshinov A., Olsen N. A global model of mantle conductivity derived from 5 years of CHAMP, Orsted, and SAC-C magnetic data. Geophys. Res. Lett. 2006. vol. 331, iss. 18. L1830. DOI:https://doi.org/10.1029/2006GL027083.

127. Langlois P., Bolduc L., Chouteau M.C. Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Québec, in 1993-1994. J. Geomagnetism and Geoelectricity. 1996. Vol. 48. P. 1033-1041.

128. Lanzerotti L.J. Geomagnetic influences on man-made systems. J. Atmos. Terr. Phys. 1979. Vol. 41. P. 787-796.

129. Lanzerotti L.J. Geomagnetic induction effects in ground-based systems. Space Sci. Rev. 1983. Vol. 34. P. 347-356. DOI:https://doi.org/10.1007/BF00175289.

130. Lanzerotti L.J. Space weather effects on technologies. Space Weather. 2001. Vol. 125, iss. 11. DOI:https://doi.org/10.1029/GM125p0011.

131. Lanzerotti L.J., Medford L.V., MacLennan C.G., Thomson D.J. Studies of large-scale Earth potential across oceanic distances. ATT Technical J. 1995. P. 73-84.

132. Lehtinen M., Pirjola R. Currents produced in earthed conductor networks by geomagnetically induced electric fields. Ann. Geophys. 1985. Vol. 3. P. 479-484.

133. Liu C.-M., Liu L.-G., Pirjola R., Wang Z.-Z. Calculation of geomagnetically induced currents in mid-to low-latitude power grids based on the plane wave method: A preliminary case study. Space Weather. 2009. Vol. 7, iss. 4. S04005. DOI:https://doi.org/10.1029/2008SW000439.

134. Liu L., Ge X., Zong W., et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway. Space Weather. 2016. Vol. 14, iss. 10. P. 754-763. DOI:https://doi.org/10.1002/2016SW001411.

135. Lotz S.I., Danskin D.W. Extreme value analysis of induced geoelectric field in South Africa. Space Weather. 2017. Vol. 15, iss. 10. P. 1347-1356.

136. Love J.J. Magnetic monitoring of Earth and space. Phys. Today. 2008. Vol. 61, iss. 2. P. 31-37. DOI:https://doi.org/10.1063/1.2883907.

137. Love J.J. Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms. Geophys. Res. Lett. 2012. Vol. 39, iss. 10. L10301. DOI:https://doi.org/10.1029/2012GL051431.

138. Love J.J., Swidinsky A. Time causal operational estimation of electric fields induced in the Earth’s lithosphere during magnetic storms. Geophys. Res. Lett. 2014. Vol. 41. P. 2266-2274. DOI:https://doi.org/10.1002/2014GL059568.

139. Love J.J., Cosson P., Pulkkinen A. Global statistical maps of extreme-event magnetic observatory 1 min first differences in horizontal intensity. Geophys. Res. Lett. 2016. Vol. 43, iss. 9. P. 4126-4135. DOI:https://doi.org/10.1002/2016GL068664.

140. Love J.J., Bedrosian P.A., Schultz A. Down to Earth with an electric hazard from space. Space Weather. 2017. Vol. 15, iss. 5. P. 658-662.

141. Love J.J., Lucas G.M., Kelbert A., Bedrosian P.A. Geoelectric hazard maps for the mid-Atlantic United States: 100 year extreme values and the 1989 magnetic storm. Geophys. Res. Lett. 2018. Vol. 44. DOI:https://doi.org/10.1002/2017GL076042.

142. Love J.J., Hayakawa H., Cliver E.W. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather. 2019. Vol. 17. P. 1281-1292. DOI:https://doi.org/10.1029/2019SW002250.

143. Lucas G.M., Love J.J., Kelbert A. Calculation of voltages in electric power transmission lines during historic geomagnetic storms: an investigation using realistic Earth impedances. Space Weather. 2018. Vol. 16, iss. 2. P. 185-195. DOI:https://doi.org/10.1002/2017SW001779.

144. Lundstedt H. Solar caused potential in gas-pipelines in southern Sweden. Proc. Solar-Terrestrial Predictions Workshop (STPW-IV), Ottava, Canada, 1992. Vol. I. P. 233-237.

145. Lundstedt H. Progress in space weather predictions and applications. Adv. Space Res. 2005. Vol. 36. P. 2516-2523.

146. Lundstedt H. The sun, space weather and GIC effects in Sweden. Adv. Space Res. 2006. Vol. 37. P. 1182-1191. DOI:https://doi.org/10.1016/j.asr.2005.10.023.

147. Mäkinen T. Geomagnetically Induced Currents in the Finnish Power Transmission System. Finnish Meteorological Institute, Geophys. Publ., Helsinki, Finland, 1993. N 32. 101 p.

148. Marin J., Pilipenko V., Kozyreva O., et al. Global Рс5 pulsations during strong magnetic storms: excitation mechanisms and equatorward expansion. Ann. Geophys. 2014. Vol. 32, iss. 4. P. 319-331. DOI:https://doi.org/10.5194/angeo-32-319-2014.

149. Marshalko E., Kruglyakov M., Kuvshinov A., et al. Exploring the influence of lateral conductivity contrasts on the storm time behavior of the ground electric field in the eastern United States. Space Weather. 2020. Vol. 18, iss. 3. e2019SW002216. DOI:https://doi.org/10.1029/2019SW002216.

150. Marshall R.A., Waters C.L., Sciffer M.D. Spectral analysis of pipe-to-soil potentials with variations of the Earth’s magnetic field in the Australian region. Space Weather. 2010. Vol. 8, iss.5. S05002. DOI:https://doi.org/10.1029/2009SW000553.

151. Marshall R.A., Dalzell M., Waters C.L., et al. Geomagnetically induced currents in the New Zealand power network. Space Weather. 2012. Vol 10, iss. 8. S08003. DOI:https://doi.org/10.1029/2012 SW000806.

152. Marshall R.A., Kelly A., Van der Walt T., et al. Modelling geomagnetic induced currents in Australian power networks. Space Weather. 2017. Vol. 15, iss. 7. P. 895-916. DOI: 10.1002/ 2017SW001613.

153. Marti L., Rezaei-Zare A., Narang A. Simulation of transformer hotspot heating due to geomagnetically induced currents. IEEE Transaction on Power Delivery. 2013. Vol. 28, iss. 1. P. 320-327.

154. Marti L., Yiu C. Real-Time Management of Geomagnetic Disturbances: Hydro One’s eXtreme Space Weather control room tools. IEEE Electrification Magazine. 2015. Vol. 3, no. 4. P. 46-51. DOI:https://doi.org/10.1109/MELE.2015.2480637.

155. Martin B.A. Telluric effects on a buried pipeline. Corrosion. 1993. Vol. 49, iss. 4. P. 343-350.

156. McKay A.J., Whaler K.A. The electric field in northern England and southern Scotland: Implications for geomagnetically induced currents. Geophysical Journal International. 2006. Vol. 167. P. 613-625.

157. Medford L.V., Meloni A., Lanzerotti L.J., Gregori G.P. Geomagnetic induction on a transatlantic communication cable. Nature. 1981. Vol. 290. P. 392-393.

158. Meloni A., Lanzerotti L.J., Gregori G.P. Induction of currents in long submarine cables by natural phenomena. Rev. Geophys. Space Phys. 1983. Vol. 21. P. 795-803.

159. Messerotti M., Zuccarello F., Guglielmino S., et al. Solar weather modelling and predicting. Space Sci. Rev. 2009. Vol. 147. P. 121-185. DOI:https://doi.org/10.1007/s11214-009-9574-x.

160. Molinski T.S. Why utilities respect geomagnetically induced currents. J. Atmos. Terr. Phys. 2002. Vol. 64. P. 1765-1778.

161. Myllys M., Viljanen A., Rui Ø.A., Ohnstad T.M. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world. J. Space Weather Space Climate. 2014. Vol. 4, no. A10. DOI:https://doi.org/10.1051/swsc/2014007.

162. National Research Council. 2008. Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report. Washington, DC: The National Academies Press. DOI:https://doi.org/10.17226/12507.

163. Newell P.T., Liou K., Zhang Y., et al. OVATION Prime- 2013: Extension of auroral precipitation model to higher disturbance levels, Space Weather. 2014. Vol. 12, P. 368-379. DOI:https://doi.org/10.1002/2014sw001056.

164. Ngwira C.M., Pulkkinen A., McKinnell L.-A., Cilliers P.J. Improved modeling of geomagnetically induced currents in the South African power network. Space Weather. 2008. Vol. 6, iss. 11. S1100. DOI:https://doi.org/10.1029/2008SW000408.

165. Ngwira C.M., Pulkkinen A., Wilder F.D., Crowley G. Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather. 2013а. Vol. 11. P. 121-131. DOI:https://doi.org/10.1002/swe.20021.

166. Ngwira C.M., Pulkkinen A., Mays Leila M., et al. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather. 2013b. Vol. 11, iss. 12. P. 671-679. DOI:https://doi.org/10.1002/2013SW000990.

167. Ngwira C.M., Pulkkinen A., Kuznetsova M.M., Glocer A. Modeling extreme “Carrington-type” space weather events using three-dimensional MHD code simulations. J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 4456-4474. DOI: 10.1002/ 2013JA019661.

168. Ngwira C.M., Pulkkinen A.A., Bernabeu E., et al. Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys. Res. Lett. 2015. Vol. 42, iss. 17. P. 6916-6921. DOI:https://doi.org/10.1002/2015GL065061.

169. Ngwira C.M., Sibeck D., Silveira M.D., et al. A study of intense local dB/dt variations during two geomagnetic storms. Space Weather. 2018. Vol. 16, iss. 6. P. 676-693. DOI:https://doi.org/10.1029/2018SW001911.

170. Nikitina L., Trichtchenko L., Boteler D.H. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather. 2016. Vol. 14. P. 481-494. DOI:https://doi.org/10.1002/2016SW001386.

171. Oliveira D.M., Ngwira C.M Geomagnetically Induced Currents: Principles. Brazilian J. Phys. 2017. Vol. 47, no. 5. P. 552-560. DOI:https://doi.org/10.1007/s13538-017-0523-y.

172. Oughton E.J., Skelton A., Horne R.B., et al. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather. 2017. Vol 15. P. 65-83. DOI:https://doi.org/10.1002/2016SW001491.

173. Overbye T.J., Shetye K.S., Hutchins T.R., et al. Power grid sensitivity analysis of geomagnetically induced currents. IEEE Transactions on Power Systems. 2013. Vol. 28. P. 4821-4828. DOI:https://doi.org/10.1109/TPWRS.2013.2274624.

174. Piccinelli R., Krausmann E. Space Weather and Power Grids - A Vulnerability assessment. Report to European Union, Luxembourg, 2014. 53 p. DOI:https://doi.org/10.2788/20848.

175. Pilipenko V.А., Belakhovsky V.B., Sakharov Ya.A., Selivanov V.N. Irregular geomagnetic disturbances embedded into substorms as a cause of induced currents in electric power lines. Proc. XLI Annual Seminar “Physics of Auroral Phenomena”. Apatity, 2018. P. 26-29.

176. Pirjola R. Electromagnetic induction in the Earth by a plane wave or by fields of line currents harmonic in time and space. Geophysica. 1982. Vol. 18. P. 1-161.

177. Pirjola R. On currents induced in power transmission systems during geomagnetic variations. IEEE Transactions on Power Systems. 1985a. Vol. 104. P. 2825-2831.

178. Pirjola R. Effect of series capacitors, neutral point reactor, autotransformers and overhead shield wires on geomagnetically induced currents (GIC) in electric power transmission systems Ann. Geophys. 1985b. P. 479-484.

179. Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Survey Geophysics. 2002. Vol. 23. P. 71-90.

180. Pirjola R., Viljanen A., Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length. Ann. Geophys. 1998. Vol. 16. P. 1434-1444. DOI:https://doi.org/10.1007/s00585-998-1434-6.

181. Pirjola R., Pulkkinen A., Viljanen A. Studies of space weather effects on the Finnish natural gas pipeline and on the Finnish high-voltage power system. Adv. Space Res. 2003. Vol. 31, iss. 4. P. 795-805.

182. Pirjola R., Kauristie K., Lappalainen H., et al. Space weather risk. Space Weather. 2005. Vol. 3, iss. 2. S02A02. DOI: 10.1029/ 2004SW000112.

183. Ptitsyna N.G., Tyasto M.I., Kassinskii V.V., Lyahov N.N. Do natural magnetic fields disturb railway telemetry? Proc. 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. St. Petersburg, 2007. P. 281-290. DOI:https://doi.org/10.1109/EMCECO.2007.4371713

184. Ptitsyna N.G., Kasinsky V.V., Villoresi G., et al. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway. Adv. Space Res. 2008. Vol. 42, iss. 9. P. 1510-1514. DOI:https://doi.org/10.1016/j.asr.2007.10.015.

185. Pulkkinen A., Pirjola R., Boteler D., et al. Modeling of space weather effects on pipelines. J. Applied Geophysics. 2001a. Vol. 48, iss. 4. P. 233-256. DOI:https://doi.org/10.1016/S0926-9851(01)00109-4.

186. Pulkkinen A., Viljanen A., Pajunpaa K., Pirjola R. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. J. Applied Geophysics. 2001b. Vol. 48. P. 219-231.

187. Pulkkinen A., Thomson A., Clarke E., McKay A. April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents. Ann. Geophys. 2003. Vol. 21. P. 709-717.

188. Pulkkinen A., Lindal S., Viljanen A., Pirjola R. Geomagnetic storm of 29-31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather. 2005. Vol. 3, iss. 8. S08C03. DOI:https://doi.org/10.1029/2004SW000123.

189. Pulkkinen A., Klimas A., Vassiliadis D., et al. Spatiotemporal scaling properties of the ground geomagnetic field variations. J. Geophys. Res.: Space Physics. 2006. Vol. 111, iss. A3. A03305. DOI:https://doi.org/10.1029/2005JA011294.

190. Pulkkinen A., Hesse M., Kuznetsova M., Rastӓtter L. First-principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth. Ann. Geophys. 2007. Vol. 25. P. 881-893.

191. Pulkkinen A., Pirjola R., Viljanen A. Statistics of extreme geomagnetically induced current events. Space Weather. 2008. Vol. 6, iss. 7. S07001. DOI:https://doi.org/10.1029/2008SW000388.

192. Pulkkinen A., Hesse M., Habib S., et al. Solar shield: Forecasting and mitigating space weather effects on high-voltage power transmission systems. Natural Hazards. 2010. Vol. 53. P. 333-345. DOI:https://doi.org/10.1007/s11069-009-9432-x.

193. Pulkkinen A.A., Bernabeu E., Eichner J., et al. Generation of 100-year geomagnetically induced current scenarios. Space Weather. 2012. Vol. 10, iss. 4. S04003. DOI:https://doi.org/10.1029/2011 SW000750.

194. Pulkkinen A., Rastätter L., Kuznetsova M., et al. Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather. 2013. Vol. 11, iss. 6. P. 369-385. DOI:https://doi.org/10.1002/swe.20056.

195. Pulkkinen A., Bernabeu E., Eichner J., et al. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space. 2015. Vol. 67, no. 93. DOI:https://doi.org/10.1186/s40623-015-0255-6.

196. Pulkkinen A., Bernabeu E., Thomson A., et al. Geomagnetically induced currents: science, engineering and applications readiness. Space Weather. 2017. Vol. 15, iss. 7. P. 828-856. DOI:https://doi.org/10.1002/2016SW001501.

197. Püthe C., Kuvshinov A. Towards quantitative assessment of the hazard from space weather. Global 3D modellings of the electric field induced by a realistic geomagnetic storm. Earth, Planets and Space. 2013. Vol. 65. P. 1017.

198. Qiu Q., Fleeman J. A., Ball D.R. Geomagnetic Disturbance. A comprehensive approach by American Electric Power to address the impacts. IEEE Electrification Magazine. 2015. Vol. 3, no. 4. P. 22-33.

199. Riley P. On the probability of occurrence of extreme space weather events. Space Weather. 2012. Vol. 10, iss. 2. S02012. DOI:https://doi.org/10.1029/2011SW000734.

200. Rodger C.J., Mac Manus D.H., Dalzell M., et al. Long-term geomagnetically induced current observations from New Zealand: Peak current estimates for extreme geomagnetic storms. Space Weather. 2017. Vol. 15, iss. 11. P. 1447-1460. DOI:https://doi.org/10.1002/2017SW001691.

201. Sackinger W.M. The Relationship of Telluric Currents to the Corrosion of Warm Arctic Pipelines. Society of Petroleum Engineer Publ. 1991. P. 361-366.

202. Sakharov Ya.A, Danilin A.N., Registration of GIC in power systems of the Kola Peninsula. Proc. 7th Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. St. Petersburg, 2007. P. 291-293.

203. Schrijver C.J., Dobbins R., Murtagh W., Petrinec S.M. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather. 2014. Vol. 12, iss. 7. P. 487-498. DOI:https://doi.org/10.1002/2014SW001066.

204. Schrijver C.S., Kauristie K., Aylward A.D., et al. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015. Vol. 55, iss. 12. P. 2745-2807. DOI: 10.1016/ j.asr.2015.03.023.

205. Schulte in den Baumen H., Moran D., Lenzen M., et al. How severe space weather can disrupt global supply chains. Natural Hazards and Earth System Sciences. 2014. Vol. 14, iss. 10. P. 2749-2759. DOI:https://doi.org/10.5194/nhess-14-2749-2014.

206. Schultz A. EMScope: A continental scale magnetotelluric observatory and data discovery resource. Data Sci. J. 2009. Vol. 8. P. IGY6-IGY20.

207. Sokolova O., Korovkin N., Hayakawa M. Geomagnetic Disturbances Impacts on Power Systems: Risk Analysis and Mitigation Strategies. CRC Press, 2021. 268 p. DOI: 10.1201/ 9781003134152.

208. Space Storms and Space Weather Hazards. Ed. I.A. Daglis. NATO Sci. Ser., Kluwer, 2000. DOI:https://doi.org/10.1007/978-94-010-0983-6.

209. Space Weather, Geophys. Monogr. Ser., ed. by P. Song, H.J. Singer, G.L. Siscoe, AGU, Washington, D. C. 2001. Vol. 125. P. 353-358. DOI:https://doi.org/10.1029/GM125p0353.

210. Space Weather - Research Towards Applications in Europe (ed. J. Lilensten), Astrophysics and Space Science Library, Springer. 2007. Vol. 344. P. 311-326. DOI:https://doi.org/10.1007/1-4020-5446-7.

211. Stauning P. Power grid disturbances and polar cap index during geomagnetic storms. J. Space Weather Space Climate. 2013. Vol. 3, no. A22. DOI:https://doi.org/10.1051/swsc/2013044.

212. Thomson A.W.P., McKay A.J., Clarke E., Reay S. J. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm. Space Weather. 2005. Vol. 3, iss. 11. S11002. DOI: 10.1029/ 2005SW000156.

213. Thomson A.W.P., McKay A.J., Viljanen A. A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents. Acta Geophys. 2009. Vol. 57. P. 209-219.

214. Thomson A.W.P, Gaunt C.T., Cilliers P., et al. Present day challenges in understanding the geomagnetic hazard to national power grids. Adv. Space Res. 2010. Vol. 45, iss.9. P. 1182-1190. DOI:https://doi.org/10.1016/j.asr.2009.11.023.

215. Thomson A.W.P., Dawson E.B., Reay S.J. Quantifying extreme behavior in geomagnetic activity. Space Weather. 2011. Vol. 9, iss. 10. S1000. DOI:https://doi.org/10.1029/2011SW000696.

216. Torta J.M., Marsal S., Quintana M. Assessing the hazard from geomagnetically induced currents to the entire high-voltage power network in Spain. Earth, Planets and Space. 2014. Vol. 66, no. 87. DOI:https://doi.org/10.1186/1880-5981-66-87.

217. Tόth G., Sokolov I.V., Gombosi T.I., et al. Space weather modeling framework: A new tool for the space science community. J. Geophys. Res. 2005. Vol. 110, iss. A12. A12226. DOI:https://doi.org/10.1029/2005JA011126.

218. Tozzi R., de Michelis P., Coco I., Giannattasio F. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. Space Weather. 2019. Vol. 17, iss. 1. P. 46-58. DOI:https://doi.org/10.1029/2018SW002065.

219. Tsagouri I., Belehaki A., Bergeot N., et al. Progress in space weather modeling in an operational environment. J. Space Weather Space Climate. 2013. Vol. 3, no. A17. DOI: 10.1051/ swsc/2013037.

220. Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events. Space Weather. 2007. Vol. 5, iss. 12. S12003. DOI:https://doi.org/10.1029/2007SW000329.

221. Trichtchenko L., Boteler D.H. Modelling of geomagnetic induction in pipelines. Ann. Geophys. 2002. Vol. 20. P. 1063-1072. DOI:https://doi.org/10.5194/angeo-20-1063-2002.

222. Trichtchenko L.D., Boteler D. Modeling geomagnetically induced currents using geomagnetic indices and data. IEEE Transactions on Plasma Science. 2004. Vol. 32, iss. 4. P. 1459-1467. DOI:https://doi.org/10.1109/TPS.2004.830993.

223. Trivedi N.B., Vitorello Í., Kabata W., Dutra S.L.G., Padilha A.L., Bologna M.S., de Pádua M.B., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather. 2007, vol. 5, iss. 4. S04004. DOI:https://doi.org/10.1029/2006SW000282.

224. Troshichev O., Janzhura A. Space Weather Monitoring by Ground-Based Means: PC Index. Springer, 2012. 288 p. DOI:https://doi.org/10.1007/978-3-642-16803-1.

225. Veeramany A., Unwin S.D., Coles G.A., et al. Framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. International Journal of Disaster Risk Reduction. 2016. Vol. 18. P. 125-137. DOI: 10.1016/ j.ijdrr.2016.06.008.

226. Viljanen A. Geomagnetically induced currents in the Finnish natural gas pipeline. Geofisica. 1989. Vol. 25. P. 135-159.

227. Viljanen A. The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophys. Res. Lett. 1997. Vol. 24. P. 631-634.

228. Viljanen A. Relation of geomagnetically induced currents and local geomagnetic variations. IEEE Transactions Power Delivery. 1998. Vol. 13. P. 1285-1290.

229. Viljanen A., Pirjola R. Geomagnetically induced currents in the Finnish high-voltage power system, A geophysical review. Surv. Geophys. 1994. Vol. 15, no. 4. P. 383-408.

230. Viljanen A., Tanskanen E. Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Ann. Geophys. 2011. Vol. 29, iss. 10. P. 1783-1792. DOI:https://doi.org/10.5194/angeo-29-1783-2011.

231. Viljanen A., Amm O., Pirjola R. Modelling geomagnetically induced currents during different ionospheric situations. J. Geophys. Res. 1999. Vol. 104. P. 28059-28072. DOI:https://doi.org/10.1029/1999JA900337.

232. Viljanen A., Nevanlinna H., Pajunpaa K., Pulkkinen A. Time derivative of the horizontal geomagnetic field as an activity indicator. Ann. Geophys. 2001. Vol. 19. P. 1107-1118.

233. Viljanen A., Pulkkinen A., Amm O., Pirjola R. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth model. Ann. Geophys. 2004. Vol. 22, P. 101-113. DOI:https://doi.org/10.5194/angeo-22-101-2004.

234. Viljanen A., Tanskanen E. I., Pulkkinen A. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann. Geophys. 2006a. Vol. 24, iss. 2. P. 725-733. DOI:https://doi.org/10.5194/angeo-24-725-2006.

235. Viljanen A., Pulkkinen A., Pirjola R., et al. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline. Space Weather. 2006b. Vol. 4, iss. 10. S10004. DOI:https://doi.org/10.1029/2006SW000234.

236. Viljanen A., Pirjola R., Wik M., et al. Continental scale modelling of geomagnetically induced currents. J. Space Weather Space Climate. 2012. Vol. 2, no. A17. DOI:https://doi.org/10.1051/swsc/ 2012017.

237. Viljanen A., Pirjola R., Pracser E., et al. Geomagnetically induced currents in Europe: Characteristics based on a local power grid model. Space Weather. 2013. Vol. 11, iss. 10. P. 575-584. DOI:https://doi.org/10.1002/swe.20098.

238. Viljanen A., Pirjola R., Prácser E., et al. Geomagnetically induced currents in Europe. J. Space Weather Space Climate. 2014. Vol. 4, no. A09. DOI:https://doi.org/10.1051/swsc/2014006.

239. Viljanen A., Wintoft P., Wik M. Regional estimation of geomagnetically induced currents based on the local magnetic or electric field. J. Space Weather Space Climate. 2015. Vol. 5, iss. A24. DOI:https://doi.org/10.1051/swsc/2015022.

240. Vorobev A.V., Pilipenko V.A., Krasnoperov R.I., et al. Short-term forecast of the auroral oval position on the basis of the “virtual globe” technology. Russian J. Earth Science. 2020. Vol. 20. ES6001. DOI:https://doi.org/10.2205/2020ES000721.

241. Wait J. Geo-electromagnetism. New York: Elsevier, 1982. 278 p.

242. Wang W., Wiltberger M., Burns A.G., et al. Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses. J. Atmos. Solar-Terr. Phys. 2004. Vol. 66, iss. 15-16. P. 1425-1441. DOI: 10.1016/ j.jastp.2004.04.008.

243. Watari S., Kunitake M., Kitamura K., et al. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather. 2009. Vol. 7, iss. 3. DOI: 10.1029/ 2008SW000417.

244. Wei L.H., Homeier N., Gannon J.L. Surface electric fields for North America during historical geomagnetic storms. Space Weather. 2013. Vol. 11. P. 451-462. DOI:https://doi.org/10.1002/swe.20073.

245. Weigel R.S., Klimas A.J., Vassiliadis D. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. J. Geophys. Res. 2003. Vol. 108, iss. A7. 1298. DOI:https://doi.org/10.1029/2002JA009627.

246. Weimer D.R. An empirical model of ground-level geomagnetic perturbations. Space Weather. 2013. Vol. 11. P. 107-120. DOI:https://doi.org/10.1002/swe.20030.

247. Wik M., Viljanen A., Pirjola R., et al. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden. Space Weather. 2008. Vol. 6, iss. 7. S07005. S07005. DOI:https://doi.org/10.1029/2007SW000343.

248. Wik M., Pirjola R., Lundstedt H., et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 2009. Vol. 27, no. 4. P. 1775-1787.

249. Wintoft P. Study of the solar wind coupling to the time difference horizontal geomagnetic field. Ann. Geophys. 2005. Vol. 23. P. 1949-1957. DOI:https://doi.org/10.5194/angeo-23-1949-2005.

250. Yagova N.V., Pilipenko V.A., Sakharov Y.A., Selivanov V.A. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents. Earth, Planets and Space. 2021. Vol. 73. DOI:https://doi.org/10.21203/rs.3.rs-39394/v2.

251. Zhang J.J., Wang C., Tang B.B. Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one-dimensional method. Space Weather. 2012. Vol. 10. S05005. DOI:https://doi.org/10.1029/2012SW000772.

252. Zhang J.J., Wang C., Sun T.R., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather. 2015. Vol. 13, iss. 10. P. 643-655. DOI:https://doi.org/10.1002/2015SW001263.

253. Zheng K., Trichtchenko L., Pirjola R., Liu L.G. Effects of geophysical parameters on GIC illustrated by benchmark network modeling. IEEE Transactions Power Delivery. 2013. Vol. 28. P. 1183-1191. DOI:https://doi.org/10.1109/TPWRD.2013.2249119.

254. URL: http://eurisgic.org (дата обращения 11 ноября 2021 г.).

255. URL: https://www.earthscope.org (дата обращения 11 ноября 2021 г.).

256. URL: www.geo.fmi.fi/image (дата обращения 11 ноября 2021 г.).

257. URL: http://omniweb.gsfc.nasa.gov (дата обращения 11 ноября 2021 г.).

258. URL: http://csem.engin.umich.edu/swmf (дата обращения 16 июня 2021 г.).

259. URL: https://www.swpc.noaa.gov/products/aurora-30-minute-forecast (дата обращения 11 ноября 2021 г.).

260. URL: https://www.gi.alaska.edu/monitors/aurora-forecast (дата обращения 11 ноября 2021 г.).

261. URL: https://en.vedur.is/weather/forecasts/aurora (дата обращения 11 ноября 2021 г.).

262. URL: http://kho.unis.no (дата обращения 11 ноября 2021 г.).

263. URL: https://www.swpc.noaa.gov (дата обращения 11 ноября 2021 г.).

264. URL: https://www.esa.int/Safety_Security/Space_Weather _Office (дата обращения 11 ноября 2021 г.).

Войти или Создать
* Забыли пароль?