Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
We continue to study the physical processes occurring during the August 17, 2001 magnetospheric storm by analyzing the dynamics of the intensity of field-aligned currents (FACs) in Iijima—Potemra Region 1 in the polar ionospheres of two hemispheres, using the modernized magnetogram inversion technique. The results obtained on the dynamics of the FAC asymmetry of two types (dawn–dusk and interhemispheric), as well as the previously obtained regularities in the behavior of Hall currents and polar cap boundaries depending on the large azimuthal component of the interplanetary magnetic field (IMF), observed during the storm, and the seasonal behavior of the conductivity are consistent with the open magnetosphere model and with satellite observations of auroras in two hemispheres. We have shown that the weakening of the asymmetry of two types in the FAC distribution during substorms in the storm under study occurs almost completely in the winter hemisphere and is much weaker in the summer one. We associate this phenomenon with the predominance of the effect of long-term exposure to the azimuthal IMF component in the sunlit polar ionosphere of the summer hemisphere over the substorm symmetrization effect of the night magnetosphere. A symmetrization effect of the polar cap and FACs, created by the solar wind pressure pulse at the end of the storm, is observed. We propose a qualitative explanation of this effect.
storm, substorm, field-aligned currents, dawn–dusk asymmetry
1. Atkinson G., Hutchison D. Effect of the day night ionospheric conductivity gradient on polar cap convective flow. J. Geophys. Res.: Space Phys. 1978, vol. 83, no. A2, pp. 725-729. DOI:https://doi.org/10.1029/JA083iA02p00725.
2. Benkevich L. Effects of ionospheric conductance in high latitude phenomena: PhD Thesis, University of Saskatchewan: Saskatoon, Canada, 2006, 210 p.
3. Benkevich L., Lyatsky W., Cogger L.L. Field-aligned currents between conjugate hemispheres. J. Geophys. Res.: Space Phys. 2000, vol. 105, no. A12, pp. 27727-27737. DOI:https://doi.org/10.1029/2000ja900095.
4. Boroev P.H., Gelberg M.G. Dependence of the longitudinal localization of the substorm center in geosynchronous orbits on the IMF Vy component. Geomagnetism and Aeronomy. 2001, vol. 41, no. 5, pp.588-594. (In Russian).
5. Cowley S.W.H. Magnetospheric asymmetries associated with the y-component of the IMF. Planet. Space Sci. 1981, vol. 29, no. 1, pp. 79-96. DOI:https://doi.org/10.1016/0032-0633(81)90141-0.
6. Cowley S.W.H., Lockwood M. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 1992, vol. 10, pp. 103-115.
7. Coxon J.C., Milan S.E., Anderson B.J. A Review of Birkeland Current Research Using AMPERE. Electric Currents in Geospace and Beyond. Eds. A. Keiling et al. Hoboken, New Jersey, USA. 2018, pp. 259-278. DOI:https://doi.org/10.1002/9781119324522.ch16.
8. Forsyth C., Shortt M., Coxon J.C., et al. Seasonal and temporal variations of field-aligned currents and ground magnetic deflections during substorms. J. Geophys. Res.: Space Phys. 2018, vol. 123, no. 4, pp. 2696-2713. DOI:https://doi.org/10.1002/2017ja025136.
9. Haaland S., Lybekk B., Maes L., et al. North-south asymmetries in cold plasma density in the magnetotail lobes: Cluster observations. J. Geophys. Res.: Space Phys. 2017, vol. 122, no. 1, pp. 136-149. DOI:https://doi.org/10.1002/2016ja023404.
10. Iijima T., Potemra T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res.: Space Phys. 1978, vol. 83, no. A2, pp. 599-615. DOI:https://doi.org/10.1029/JA083iA02p00599.
11. Kostarev D. V., Mager P. N., Klimushkin D. Yu. Alfvén wave parallel electric field in the dipole model of the magnetosphere: Gyrokinetic treatment. J. Geophys. Res.: Space Phys. 2021, vol. 126, e2020JA028611. DOI:https://doi.org/10.1029/2020JA028611.
12. Liou K., Mitchell E.J. Hemispheric asymmetry of the premidnight aurora associated with the dawn-dusk component of the interplanetary magnetic field. J. Geophys. Res.: Space Phys. 2019, vol. 124, pp. 1625-1634. DOI:https://doi.org/10.1029/2018JA025953.
13. Lukianova R., Kozlovsky A. Dynamics of polar boundary of the auroral oval derived from the IMAGE satellite data. Cosmic Res. 2013, vol. 51, no. 1, pp. 46-53. DOI:https://doi.org/10.1134/s0010952513010061.
14. Lunyushkin S.B., Mishin V.V., Karavaev Y.A., et al. Studying the dynamics of electric currents and polar caps in ionospheres of two hemispheres during the August 17, 2001 geomagnetic storm. Solar-Terr. Phys. 2019, vol. 5, no. 2, pp. 15-27. DOI:https://doi.org/10.12737/stp-52201903.
15. Lyatskaya S., Khazanov G.V., Zesta E. Interhemispheric field-aligned currents: Simulation results. J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 7, pp. 5600-5612. DOI:https://doi.org/10.1002/2013ja019558.
16. Lyatskaya S., Lyatsky W., Zesta E. Effect of interhemispheric currents on equivalent ionospheric currents in two hemispheres: Simulation results. J. Geophys. Res.: Space Phys. 2015, vol. 121, no. 2, pp. 1339-1348. DOI:https://doi.org/10.1002/2015ja021167.
17. Lyatsky W.B. Tokovye sistemy magnitosferno-ionosfernyh vozmushchenii [Current Systems of Magnetospheric-Ionospheric Disturbances]. Leningrad, Nauka Publ., 1978, 199 p. (In Russian).
18. Lyatsky W.B., Maltsev Yu.P. Magnitosferno-ionosfernoe vzaimodeistvie [The Magnetosphere-Ionosphere Interaction]. Moscow, USSR, Nauka Publ., 1983, 192 p. (In Russian).
19. Mishin V.M. Spokojnye geomagnitnye variatsii i toki v magnitosfere [Quiet geomagnetic variations and currents in the magnetosphere]. Novosibirsk, Nauka, 1976, 203 p. (In Russian).
20. Mishin V.M. The magnetogram inversion technique and some applications. Space Sci. Rev. 1990, vol. 53, no. 1-2, pp. 83-163. DOI:https://doi.org/10.1007/bf00217429.
21. Mishin V.M., Kurikalova M.A. Magnetospheric substorms in the Earth two hemispheres. The 8 March 2008 and 6 April 2000 events. Danish Scientific J. 2020, vol. 2, no.42, pp. 7-21.
22. Mishin V.M., Bazarzhapov A.D., Saifudinova T.I., et al. Different Methods to Determine the Polar Cap Area. J. Geomagnetism and Geoelectricity. 1992, vol. 44, no. 12, pp. 1207-1214. DOI:https://doi.org/10.5636/jgg.44.1207.
23. Mishin V.M., Kurikalova M.A., Förster M. Electric circuits and their generators in the Earth’s magnetosphere: The concept of electric circuits as applied to the first phase of the April 6, 2000 superstorm. Geomagnetism and Aeronomy. 2010, vol. 50, no. 8, pp. 978-987. DOI:https://doi.org/10.1134/s0016793210080086.
24. Mishin V.M., Förster M., Kurikalova M.A., Mishin V.V. The generator system of field-aligned currents during the April 06, 2000, superstorm. Adv. Space Res. 2011, vol. 48, no. 7, pp. 1172-1183. DOI:https://doi.org/10.1016/j.asr.2011.05.029.
25. Mishin V.M., Kurikalova M.A., Mishin V.V., et al. Field-aligned current dynamics in two selected intervals of the 6 April 2000 superstorm. Proc. XXXVIII Annual Seminar “Physics of Auroral Phenomena”. Apatity, Russia, 2015a, pp. 24-27.
26. Mishin V.M., Mishin V.V., Kurikalova M.A., et al. Field-aligned current dynamics during two substorms of summer and winter types and model for the electric circuit of the magnetosphere-ionosphere system of two hemispheres. Proc. XXXVIII Annual Seminar “Physics of Auroral Phenomena”. Apatity, Russia, 2015b, pp. 28-31.
27. Mishin V.M., Mishin V.V., Moiseev A.V. Distribution of the field-aligned currents in the ionosphere: dawn-dusk asymmetry and its relation to the asymmetry between the two hemispheres. Geomagnetism and Aeronomy. 2016, vol. 56, no. 5, pp. 524-534. DOI:https://doi.org/10.7868/S0016794016050096.
28. Mishin V.M., Mishin V.V, Kurikalova M.A., et al. Positive and negative feedbacks in the magnetosphere-ionosphere coupling. J. Atmos. Solar-Terr. Phys. 2019, vol. 187, pp. 10-21. DOI:https://doi.org/10.1016/j.jastp.2019.03.002.
29. Moses J.J., Siscoe G.L., Crooker N.U., Gorney D.J. IMF By and day-night conductivity effects in the expanding polar cap convection model. J. Geophys. Res.: Space Phys. 1987, vol. 92, no. A2, pp. 1193-1198. DOI:https://doi.org/10.1029/JA092iA02p01193.
30. Pettigrew E.D., Shepherd S.G., Ruohoniemi J.M. Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J. Geophys. Res.: Space Phys. 2010, vol. 115, no. A7, pp. A07305. DOI:https://doi.org/10.1029/2009ja014956.
31. Reistad J.P., Østgaard N., Laundal K.M., et al. Observations of asymmetries in ionospheric return flow during different levels of geomagnetic activity. J. Geophys. Res.: Space Phys. 2018, vol. 123, no. 6, pp. 4638-4651. DOI:https://doi.org/10.1029/2017ja025051.
32. Reistad J.P., Laundal K.M., Østgaard N., et al. Separation and quantification of ionospheric convection sources: 2. The dipole tilt angle influence on reverse convection cells during northward IMF. J. Geophys. Res.: Space Phys. 2019, vol. 124, no. 7, pp. 6182-6194. DOI:https://doi.org/10.1029/2019ja026641.
33. Richmond A.D., Roble R.G. Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General Circulation Model. J. Geophys. Res.: Space Phys. 1987, vol. 92, no. A11, pp. 12365-12376. DOI:https://doi.org/10.1029/JA092iA11p12365.
34. Senior C., Fontaine D., Caudal G., et al. Convection electric fields and electrostatic potential over 6172 invariant latitude observed with the European incoherent scatter facility: 2. Statistical results. Ann. Geophys. 1990, vol. 8, pp. 257-272.
35. Shue J.-H. Dependence of the ionospheric convection pattern on the conductivity and the southward IMF: Ph. D. Thesis. University of Alaska, Fairbanks, 1993, 141 p.
36. Shirapov D.S., Mishin V.M. Modelirovanie global'nykh elektrodinamicheskikh processov v geomagnitosfere [Modeling of the Global Electrodynamic Processes in the Geomagnetosphere]. Ulan-Ude, East Siberian State Technological University Publ., 2009, 213 p. (In Russian).
37. Stenbaek-Nielsen H.C., Otto A. Conjugate auroras and the interplanetary magnetic field. J. Geophys. Res.: Space Phys. 1997, vol. 102, no. A2, pp. 2223-2232. DOI:https://doi.org/10.1029/96ja03563.
38. Suvorova A.V. Flux enhancements of >30 keV electrons at low drift shells L<1.2 during last solar cycles. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 12,274-12,287. DOI:https://doi.org/10.1002/2017JA024556.
39. Tenfjord P., Østgaard N., Snekvik K., et al. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. J. Geophys. Res.: Space Phys. 2015, vol. 120, no. 11, pp. 9368-9384. DOI:https://doi.org/10.1002/2015ja021579.
40. Velichko V.A., Boroyev R.N., Gelberg M.G. Azimuthal asymmetry of field-aligned currents flowing in and out of the ionosphere in a substorm current wedge. Geomagnetism and Aeronomy. 2002, vol. 42, no. 5, pp. 619-623. (In Russian).
41. Velichko V.A., Boroyev R.N., Gelberg M.G., et al. North-south asymmetry of the substorm intensity depending on the IMF By-component. Earth, Planets and Space. 2002, vol. 54, pp. 955-961.
42. Østgaard N., Reistad J.P., Tenfjord P., et al. The asymmetric geospace as displayed during the geomagnetic storm on August 17, 2001. Ann. Geophys. 2018, vol. 36, pp. 1577-1596. DOI:https://doi.org/10.5194/angeo-2018-65.
43. URL: http://ckp-angara.iszf.irk.ru/index_en.html (accessed June 18, 2020).
44. URL: http://www.intermagnet.org/data-donnee/download- eng.php (accessed June 18, 2020).
45. URL: http://space.fmi./Image (accessed June 18, 2020).
46. URL: http://space.augsburg.edu/maccs/requestdatafile.jsp (accessed June 18, 2020).
47. URL: https://www.gi.alaska.edu/monitors/magnetometer (accessed June 18, 2020).
48. URL: http://www.carisma.ca (accessed June 18, 2020).
49. URL: http://supermag.jhuapl.edu (accessed June 18, 2020).