DIAGNOSTICS OF PLASMA JETS IN THE SOLAR CORONA
Аннотация и ключевые слова
Аннотация (русский):
The paper discusses the diagnostics of plasma jets in the solar corona with the use of data from modern space- and ground-based telescopes observing the Sun in the extreme ultraviolet (EUV) and micro- wave bands. We examine observational parameters of EUV and radio emission in events associated with plasma jets, depending on the mechanism of formation, initiation conditions, and evolution of the jets. The opportunities provided by the study of plasma jets, which relies on simultaneous observations in different bands, are highlighted. For a number of jets, we have measured their primary parameters; and in this paper we present preliminary results of statistical processing of the data obtained. Microwave observations of several specific events, made by ground-based instruments RATAN-600, SRH, and Nobeyama Radioheliograph, are considered in detail. The diagnostic capabilities of these instruments for studying coronal jets are shown. To analyze the three-dimensional structure of the coronal magnetic field, we have used SDO/HMI data, which allowed for the reconstruction of the field in the lower corona. The information gained is compared with the results of diagnostics of the magnetic field at the base of the corona according to RATAN-600 data. The purpose of the methods developed is to determine the physical mechanisms responsible for the generation, collimation, and dynamics of plasma jets in the solar atmosphere.

Ключевые слова:
Sun, solar corona, solar active regions, coronal jets, microwave observations of the Sun, EUV observations of the Sun
Список литературы

1. Bogod V.M. RATAN-600 radio telescope in the 24th solar activity cycle. I. New opportunities and tasks. Astrophys. Bull. 2011, vol. 66, no. 2, pp. 190-204. DOI:https://doi.org/10.1134/S1990341311020064.

2. Cho I., Nakariakov V.M., Moon Y., Lee J., Yu D., Cho K., Yurchyshyn V., Lee H. Accelerating and supersonic density fluctuations in coronal hole plumes: signature of nascent solar winds. Astrophys. J. 2020, vol. 900, no. 2, p. L19. DOI:https://doi.org/10.3847/2041-8213/abb020.

3. Fleishman G.D., Anfinogentov S., Loukitcheva M., Mysh’yakov I., Stupishin A. Casting the coronal magnetic field reconstruction tools in 3D Using the MHD Bifrost model. Astrophys. J. 2017, vol. 839, no. 1, p. 30. DOI:https://doi.org/10.3847/1538-4357/aa6840.

4. Joshi R., Chandra R., Schmieder B., Moreno-Insertis F., Aulanier G., Nóbrega-Siverio D., Devi P. Case study of multi-temperature coronal jets for emerging flux MHD models. Astron. Astrophys. 2020, vol. 639, p. A22. DOI:https://doi.org/10.1051/0004-6361/202037806.

5. Kaltman T.I., Nakariakov V.M., Anfinogentov S.A., Stupishin A.G., Loukitcheva M.V., Shendrik A.V. Catalogue of hot jets in the solar corona for 2015-2018. Proc. the XXIII All-Russian Annual Conference “Solar and Solar-Terrestrial Physics”. St. Petersburg, 2019, pp. 197-200. DOI:https://doi.org/10.31725/0552-5829-2019-197-200. (In Russian).

6. Kudriavtseva A.V., Prosovetsky D.V. White-light polar jets on rising phase of solar cycle 24. J. Atmos. Solar-Terr. Phys. 2019, vol. 193, p. 105039. DOI:https://doi.org/10.1016/j.jastp.2019.05.003.

7. Kuz’menko I.V., Grechnev V.V., Uralov A.M. A study of eruptive solar events with negative radio bursts. Astron. Reports. 2009, vol. 53, no. 11, pp. 1039-1049. DOI:https://doi.org/10.1134/S1063772909110092.

8. Kuzmenko I.V. Coronal jets as a cause of microwave negative bursts. Solar-Terr. Phys. 2020, vol. 6, no 3, pp. 23-28. DOI:https://doi.org/10.12737/stp-63202003.

9. Lesovoi S., Altyntsev A., Kochanov A., Grechnev V., Gubin A., Zhdanov D., et al. Siberian Radioheliograph: first results. Solar-Terr. Phys. 2017, vol. 3, no. 1, pp. 3-18. DOI:https://doi.org/10.12737/article_58f96ec60fec52.86165286.

10. Nakajima H., Nishio M., Enome S., Shibasaki K.; Takano T., Hanaoka Y., et al. The Nobeyama Radioheliograph. Proc. IEEE. 1994, vol. 82, no. 5, p. 705-713.

11. Nisticò G., Zimbardo G., Patsourakos S., Bothmer V., Nakariakov V.M. North-south asymmetry in the magnetic deflection of polar coronal hole jets. Astron. Astrophys. 2015, vol. 583. p. A127. DOI:https://doi.org/10.1051/0004-6361/201525731.

12. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, no. 1-2, pp. 3-15. DOI:https://doi.org/10.1007/s11207-011-9841-3.

13. Raouafi N.E., Patsourakos S., Pariat E., Young P.R., Sterling A.C., Savcheva A., et al. Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 2016, vol. 201, no. 1-4, pp. 1-53. DOI:https://doi.org/10.1007/s11214-016-0260-5.

14. Stupishin A.G., Kaltman T.I., Anfinogentov S.A. On the method for selecting jets in homogeneous time series of images of the Sun. Proc. the XXIV All-Russian Annual Conference “Solar and Solar-Terrestrial Physics”. St. Petersburg, 2020, pp. 285-288. DOI:https://doi.org/10.31725/0552-5829-2020-285-288. (In Russian).

15. Yu D.J., Nakariakov V.M. Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma. Astrophys. J. 2020, vol. 896, no. 1, p. 21. DOI:https://doi.org/10.3847/1538-4357/ab8d3c.

16. Zhang Q.M., Ji H.S. Blobs in recurring extreme-ultraviolet jets. Astron. Astrophys. 2014, vol. 567, p. A11. DOI:https://doi.org/10.1051/0004-6361/201423698.

17. Zimovets I. V., Nakariakov V.M. Excitation of kink oscillations of coronal loops: statistical study. Astron. Astrophys. 2015, vol. 577, p. A4. DOI:https://doi.org/10.1051/0004-6361/201424960.

18. URL: http://spbf.sao.ru/coronal-jets-catalog (accessed March 9, 2021).

19. URL: https://ckp-rf.ru/ckp/3056 (accessed March 9, 2021).

Войти или Создать
* Забыли пароль?