Национальный исследовательский университет «Высшая школа экономики»
Москва, Россия
Москва, Россия
Москва, Россия
Осло, Норвегия
Москва, Россия
In this work, we study the small-scale structure of a polarization jet in the subauroral region during the April 20, 2018 geomagnetic storm. We report measurement results of plasma parameters inside the polarization jet with a maximum sampling rate of up to 1 kHz, obtained with Langmuir probes installed on the NorSat-1 microsatellite. The study establishes the presence of temperature and electron density inhomogeneities inside the polarization jet with spatial dimensions of tens to hundreds of meters. The previously known features of the polarization jet evolution have been confirmed. We have also found that the distribution of the electron temperature inside the jet forms two separate peaks as the geomagnetic activity develops during the storm.
polarization jet, subauroral ionosphere, geomagnetic activity, satellite data
1. Anderson P.C., Heelis R.A., Hans W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. 1991, vol. 96, no. A4, pp. 5785-5792. DOI:https://doi.org/10.1029/90JA02651.
2. Anderson P.C., Hanson W.B., Heelis R.A., Craven J.D., Baker D.N., Frank L.A. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. 1993, vol. 98, no. A4, pp. 6069-6078. DOI:https://doi.org/10.1029/92JA01975.
3. Anderson P.C., Carpenter D.L., Tsuruda K., Mukai T., Rich F.J. Multisatellite observations of rapid subauroral ion drifts (SAID). J. Geophys. Res. 2001, vol. 106, no. A12, pp. 29585-29599. DOI:https://doi.org/10.1029/2001JA000128.
4. Benkova N.P., Kozlov E.F., Samorokin N.I., GalperinYu.I., Beghin C. Two-dimensional snapshots of electron density in the main trough and diffuse auroral zone from a close network of ionosondes: Comparison with measurements from AUREOL-3 satellite. The Results of the ARCAD-3 Project and of the Recent Programmes in Magnetospheric and Ionospheric Physics. Trans. of Intern. Symp. Toulouse, May 1984. Toulouse, СNES, Cepadues-Editions, 1985, pp. 855-878.
5. Bondar E.D., Khalipov V.L., Stepanov A.E. Characteristics of a polarization jet as measured at the subauroral stations Yakutsk and Podkamennaya Tunguska. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2005, no. 8, pp. 143-144. (In Russian).
6. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Ionospheric Physics]. Moscow, Nauka Publ., 1988, 528 p. (In Russian).
7. Burke W.J., Maynard N.C., Hagan M.P., Wolf R.A., Wilson G.R., Gentile L.C., Gussenhoven M.S., Huang C.Y., Garner T.W., Rich F.J. Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4-6, 1991. J. Geophys. Res. 1998, vol. 103, iss. A12, pp. 29399-29418. DOI:https://doi.org/10.1029/98JA02197.
8. Figueiredo S., Karlsson E., Marklund G. Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution. Ann. Geophys. 2004, vol. 22, pp. 923-934. DOI:https://doi.org/10.5194/angeo-22-923-2004.
9. Foster J.C., Burke W.J. SAPS: A new categorization for subauroral electric fields. EOS Trans. AGU. 2002, vol. 83, pp. 293-294. DOI:https://doi.org/10.1029/2002EO000289.
10. Foster J.C., Vo H.B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 2002, vol. 107, no. A12, 1475. DOI:https://doi.org/10.1029/2002JA009409.
11. Foster J.C., Park C.G., Brace L.H., Burrows J.R., Hoffman J.H., Maier E.J., Whitteker J.H. Plasmapause signatures in the ionosphere and magnetosphere. J. Geophys. Res. 1978, vol. 83, no. A3, pp. 1175-1182. DOI:https://doi.org/10.1029/JA083iA03p01175.
12. Galperin Yu.I. Polarization jet: characteristics and a model. Ann. Geophys. 2002, vol. 20, no. 3, pp. 391-404. DOI:https://doi.org/10.5194/angeo-20-391-2002.
13. Galperin Yu.I., Sivtseva L.D. Subavroral’naya verkhnyaya ionosfera [Subauroral upper ionosphere]. Novosibirsk, Nauka Publ., 1990, 192 p. (In Russian).
14. Galperin Yu.I., Ponomarev V.N., Zosimova A.G. Direct measurements of ion drift velocity in the upper ionosphere during a magnetic storm. I. Methodological issues and some measurement results in a magnetically quiet time. Kosmicheskie issledovaniya [Space Researches]. 1973a, vol. 11, no. 2, pp. 273-283. (In Russian).
15. Galperin n Yu.I., Ponomarev V.N., Zosimova A.G. Direct measurements of ion drift velocity in the upper ionosphere during a magnetic storm. II. Results of measurements during a magnetic storm on November 3, 1967. Kosmicheskie issledovaniya [Space Researches]. 1973a, vol. 11, no. 2, pp. 284-296. (In Russian).
16. Galperin Yu.I., Ponomarev V.N., Zosimova A.G. Plasma convection in the polar ionosphere. Ann. Geophys. 1974, vol. 30, no. 1, pp. 1-7.
17. Galperin Yu.I., Kran’e Zh., Lisakov Yu.V., Nikolaenko L.M., Sinitsyn V.M., Sovo Zh.-A., Khalipov V.L. Diffuse auroral zone. I. Model of the equatorial boundary of the diffusion zones of secondary electrons in the evening and near-midnight sectors. Kosmicheskie issledovaniya [Cosmic Research]. 1977, vol. 15, no. 3, pp. 421-434. (In Russian).
18. He F., Zhang X.-X., Chen B. Solar cycle, seasonal, and diurnal variations of subauroral ion drifts: Statistical results. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 5076-5086, DOI:https://doi.org/10.1002/2014JA019807.
19. He F., Zhang X.-X., Wang W., Chen B. Double-peak subauroral ion drifts (DSAIDs). Geophys. Res. Lett. 2016, vol. 43, pp. 5554-5562. DOI:https://doi.org/10.1002/2016GL069133.
20. Hoang H., Clausen L.B.N., Røed K., Bekkeng T.A., Trondsen E., Lybekk B., Strøm H., Bang-Hauge D.M., Pedersen A., Spicher A., Moen J.I. The Multi-Needle Langmuir Probe System on Board NorSat-1. Space Sci. Rev. 2018, vol. 214, iss.4, 75. DOI:https://doi.org/10.1007/s11214-018-0509-2.
21. Ievenko I.B., Khalipov V.L., Alekseev V.N., Stepanov A.E. Dynamics of ionization of the F2 layer in the region of diffuse aurora and SAR-arc during a substorm. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2001, vol. 41, no. 5, pp. 642-649. (In Russian).
22. Jacobsen K.S., Pedersen A., Moen J.I., Bekkeng T.A. A new Langmuir probe concept for rapid sampling of space plasma electron density. Measurement Science and Technology. 2010, vol. 21, iss. 8, 085902. DOI:https://doi.org/10.1088/0957-0233/21/8/085902.
23. Karlsson E., Marklund G., Blomberg L., Malkki A. Subauroral electric fields observed by Freja satellite: A statistical study. J. Geophys. Res. 1998, vol. 103, pp. 4327-4341. DOI:https://doi.org/10.1029/97JA00333.
24. Khalipov V.L., Galperin Yu.I., Lisakov Yu.V., Nikolaenko L.M., Kran’e Zh., Sinitsyn V.M., Sovo Zh.-A. Diffuse auroral zone. II. Formation and dynamics of the polar edge of the subauroral ionospheric trough in the evening sector. Kosmicheskie issledovaniya [Cosmic Research]. 1977, vol. 15, no. 5, pp. 708-724. (In Russian).
25. Khalipov V.L., Galperin n Yu.I., Stepanov A.E., Bondar’ E.D. Formation of polarization jet during injection of ions into the inner magnetosphere. Adv. Space Res. 2003, vol. 31, no. 5, pp. 1303-1308.
26. Khalipov V.L., Stepanov A.E., Kotova G.A., Bondar’ E.D. Position variations of the polarization jet and injection boundary of energetic ions during substorms. Geomagnetism and Aeronomy. 2016a, vol. 56, no. 2, pp. 174-180. DOI:https://doi.org/10.1134/S0016793216020080.
27. Khalipov V.L., Stepanov A.E., Kotova G.A., Kobyakova S.E., Bogdanov V.V., Kaysin A.V., Panchenko V.A. Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites. Geomagnetism and Aeronomy. 2016b, vol. 56, no. 5, pp. 535-544. DOI:https://doi.org/10.1134/S0016793216050066.
28. Kotova D.S., Zakharenkova I.E., Klimenko M.V., Ovodenko V.B., Tyutin I.V., Chugunin D.V., Chernyshov A.A., Ratovskiy K.G., Chirik N.V., Uspenskiy M.V., Klimenko V.V., Rakhmatulin R.A., Pashin A.Yu., Dmitriev A.V., Suvorova A.V. Formation of ionospheric irregularities in the East Siberian region during a geomagnetic storm on May 27-28, 2017. Khimicheskaya fizika [Russian Journal of Physical Chemistry B]. 2020, vol. 14, no. 2, pp. 377-389. DOI:https://doi.org/10.1134/S1990793120020232.
29. Koustov A.V., Drayton R.A., Makarevich R.A., McWilliams K.A., St-Maurice J.-P., Kikuchi T., Frey H.U. Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar. Ann. Geophys. 2006, vol. 24, pp. 1591-1608. DOI:https://doi.org/10.5194/angeo-24-1591-2006.
30. MacDonald E.A., Donovan E., Nishimura Yu., Case N.A., Gillies D.M., Gallardo-Lacourt B., Archer W.E., Spanswick E.L., Bourassa N., Connors M., Heavner M., Jackel B., Kosar B., Knudsen D.J., Ratzlaff C., Schofield I. New science in plain sight: Citizen scientist lead to the discovery of optical structure in the upper atmosphere. Sci. Adv. 2018, vol. 4, no. 3. DOI:https://doi.org/10.1126/sciadv.aaq0030.
31. Maynard N.C. On large poleward directed electric fields at subauroral latitudes. Geophys. Res. Lett. 1978, vol. 5, no. 7, pp. 617-618.
32. Maynard N.C., Aggson T.L., Heppner J.P. The plasmaspheric electric field as measured by ISEE-1. J. Geophys. Res. 1983, vol. 88, no. A5, pp. 3981-3990.
33. Mishin E.V. Interaction of substorm injections with the subauroral geospace: Multispacecraft observations of SAID. J. Geophys. Res. 2013, vol. 118, no. A9, pp. 5782-5796. DOI:https://doi.org/10.1002/jgra.50548.
34. Mishin E.V., Puhl-Quinn P.A., Santolik O. SAID: A turbulent plasmaspheric boundary layer. Geophys. Res. Lett. 2010, vol. 37, iss. 7, L07106. DOI:https://doi.org/10.1029/2010GL042929.
35. Mishin E.V., Nishimura Yu., Foster J. SAPS/SAID revisited: A causal relation to the substorm current wedge. J. Geophys. Res.: Space Phys. 2017, vol. 112, iss. 8, pp. 8516-8535. DOI:https://doi.org/10.1002/2017JA024263.
36. Mott-Smith H.M., Langmuir I. The theory of collectors in gaseous discharges. Phys. Rev. 1926, vol. 28, iss. 4, pp. 727-763. DOI:https://doi.org/10.1103/PhysRev.28.727.
37. Newell P.T., Gjerloev J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 2011, vol. 116, no. A12211. DOI:https://doi.org/10.1029/2011JA016779.
38. Nose M., Iyemori T., Sugiura M., Kamei T. Geomagnetic Dst index. World Data Center for Geomagnetism, Kyoto. 2015. DOI:https://doi.org/10.17593/14515-74000.
39. Rowland D.E., Wygant J.R. Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J. Geophys. Res. 1998, vol. 103, no. A7, pp. 14959-14964.
40. Seran E., Frey H.U., Fillingim H., Berthelier J.J., Pottelette R., Parks G. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004. Ann. Geophys. 2008, vol. 25, iss. 12, pp. 2503-2511. DOI: fhttps://doi.org/10.5194/angeo-25-2503-2007f.
41. Spiro R.W., Heelis R.A., Hanson W.B. Rapid subauroral ion drifts observed by Atmosphere Explorer C. Geophys. Res. Lett. 1979, vol. 6, iss. 8, pp. 657-660. DOI:https://doi.org/10.1029/GL006 i008p00657.
42. Stepanov A.E., Golikov I.A., Popov V.I., Bondar E.D., Khalipov V.L. Structural features of the subauroral ionosphere upon the occurrence of a polarization jet. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2011, vol. 51, no. 5, pp. 643-649. (In Russian).
43. Stepanov A.E., Khalipov V.L., Golikov I.A., Bondar E.D. Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral’noi ionosfernoi plazmy [Polarization jet: narrow and fast drifts of subauroral ionospheric plasma]. Yakutsk, 2017, 172 p. (In Russian).
44. Stepanov A.E., Kobyakova S.E., Khalipov V.L. Observation of fast subauroral ionospheric plasma drifts according to the data of the Yakutsk meridional chain of stations. Solar-Terr. Phys. 2019a, vol. 5, no. 4, pp. 60-65. DOI:https://doi.org/10.12737/stp-54201908.
45. Stepanov A.E., Kobyakova S.E., Khalipov V.L., Kotova G.A. Results of observations of ionospheric plasma drifts in the polarization jet region. Geomagnetism and Aeronomy. 2019b, vol. 59, no. 5, pp. 539-542. DOI:https://doi.org/10.1134/S001679321905013X.
46. Wang H., Lühr H., Ritter P., Kervalishvili G. Temporal and spatial effects of subauroral polarization streams on the thermospheric dynamics. J. Geophys. Res. 2012, vol. 117, no. A11. DOI:https://doi.org/10.1029/2012JA018067.
47. Wei D., Yu Y., Ridley A.J., Cao J., Dunlop M.W. Multi-point observations and modeling of subauroral polarization streams (SAPS) and double-peak subauroral ion drifts (DSAIDs): A case study. Adv. Space Res. 2019, vol. 63, pp. 3522-3535. DOI:https://doi.org/10.1016/j.asr.2019.02.004.
48. URL: http://tid.uio.no/plasma/norsat (accessed May 11, 2020).
49. URL: http://wdc.kugi.kyotou.ac.jp (accessed May 11, 2020).
50. URL: http://supermag.jhuapl.edu/info (accessed May 11, 2020).