с 01.01.2008 по настоящее время
Борок, Россия
Борок, Россия
Борок, Россия
We have analyzed the dynamics of solar wind and interplanetary magnetic field (IMF) parameters during the development of 933 isolated geomagnetic storms, observed over the period from 1964 to 2010. The analysis was carried out using the epoch superposition method at intervals of 48 hrs before and 168 hrs after the moment of Dst minimum. The geomagnetic storms were selected by the type of storm commencement (sudden or gradual) and by intensity (weak, moderate, and strong). The dynamics of the solar wind and IMF parameters was compared with that of the Dst index, which is an indicator of the development of geomagnetic storms. The largest number of storms in the solar activity cycle is shown to occur in the years of minimum average values (close in magnitude to 1) of the solar wind parameter β (β is the ratio of plasma pressure to magnetic pressure). We have revealed that the dynamics of the Dst index is similar to that of the β parameter. The duration of the storm recovery phase follows the characteristic recovery time of the β parameter. We have found out that during the storm main phase the β parameter is close to 1, which reflects the maximum turbulence of solar wind plasma fluctuations. In the recovery phase, β returns to background values β~2‒3.5. We assume that the solar wind plasma turbulence, characterized by the β parameter, can play a significant role in the development of geomagnetic storms.
geomagnetic storms, solar wind, interplanetary magnetic field, Dst index, β parameter, turbulence
1. Akasofu S.-I., Chapman S. Solnechno-zemnaya fizika. Chast’ 2. [Solar-Terrestrial Physics. Part 2]. Moscow, Mir Publ., 1975, 512 p. (In Russian). (English edition: Akasofu S.-I., Chapman S. Solar-Terrestrial Physics. Oxford, Clarendon Press, 1972, 901 p.)
2. Antonova E.E. Magnetostatic equilibrium and turbulent transport in Earth’s magnetosphere: A review of experimental observation data and theoretical approaches. International Journal of Geomagnetism and Aeronomy. 2002, vol. 3, no. 2, pp. 117-130.
3. Antonova E.E. Magnetostatic equilibrium and current systems in the Earth’s magnetosphere. Adv. Space Res. 2004, vol. 33, pp. 752-760. DOI:https://doi.org/10.1016/S0273-1177(03)00636-7.
4. Borovsky J.E., Funsten H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 2003, vol. 108, iss. A6, 1246. DOI:https://doi.org/10.1029/2002JA009601.
5. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, vol. 111, A07S08. DOI:https://doi.org/10.1029/2005JA011447.
6. Burton R.K., McPherron R.L. Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, pp. 4204-4214. DOI: 10.1029 /JA080i031p04204.
7. Chernyshov A.A., Karelsky K.V., Petrosyan A.S. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas. Physics-Uspekhi. 2014, vol. 57, no. 5, pp. 421-454. DOI:https://doi.org/10.3367/UFNe.0184. 201405a.0457.
8. D’Amicis R., Bruno R., Bavassano B. Geomagnetic activity driven by solar wind turbulence. Adv. Space Res. 2010, vol. 46, pp. 514-520. DOI:https://doi.org/10.1016/j.asr.2009.08.031.
9. Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Dynamics of interplanetary parameters and geomagnetic indices during magnetic storms induced by different types of solar wind. Geomagnetism and Aeronomy. 2019, vol. 59, no. 6, pp. 639-650. DOI:https://doi.org/10.1134/S0016793219060069.
10. Echer E., Gonzalez W.D., Tsurutani B.T., Gonzalez A.L. Interplanetary conditions causing intense geomagnetic storms (Dst≤-100 nT) during solar cycle 23 (1996-2006). J. Geophys. Res. 2008, vol. 113, A05221. DOI:https://doi.org/10.1029/2007 JA012744.
11. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, no. A4, pp. 5771-5792. DOI:https://doi.org/10.1029/93JA02867.
12. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, vol. 88, pp. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.
13. Guo J., Feng X., Zhang J., Zuo P., Xiang C. Statistical properties and geoefficiency of interplanetary coronal mass ejections and their heaths during intense geomagnetic storms. J. Geophys. Res. 2010, vol. 115, A09107. DOI:https://doi.org/10.1029/2009JA015140.
14. Haines C., Owens M.J., Barnard L., Lockwood M., Ruffenach A. The variation of geomagnetic storm duration with intensity. Solar Phys. 2019, vol. 294, 154. DOI:https://doi.org/10.1007/s11207-019-1546-z.
15. Hutchinson J.A., Wright D.M., Milan S.E. Geomagnetic storms over the last solar cycle: A superposed epoch analysis. J. Geophys. Res. 2011, vol. 116, A09211. DOI: 10.1029/ 2011JA016463.
16. Katus R.M., Liemohn M.W., Ionides E.L., Ilie R., Welling D., Sarno-Smith L.K. Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J. Geophys. Res.: Space Phys. 2015, vol. 12, pp. 310-327. DOI:https://doi.org/10.1002/2014JA020712.
17. Kurazhkovskaya N.A. Global disturbance of Earth’s magnetosphere and its connection with space weather. Solar-Terr. Phys. 2020, vol. 6, no. 1, pp. 41-49. DOI:https://doi.org/10.12737/stp-61202005.
18. Loewe C.A., Prӧlss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209-14213. DOI:https://doi.org/10.1029/96JA04020.
19. Lyatsky W., Tan A. Solar wind disturbances responsible for geomagnetic storms. J. Geophys. Res. 2003, vol. 108, iss. A3, 1134. DOI:https://doi.org/10.1029/2001JA005057.
20. Obridko V.N., Kanonidi Kh.D., Mitrofanova T.A., Shelting B.D. Solar activity and geomagnetic disturbances. Geomagnetism and Aeronomy. 2013, vol. 53, no. 2, pp. 147-156. DOI:https://doi.org/10.1134/S0016793213010143.
21. Pulinets M.S., Ryazantsev M.O., Antonova E.E., Kirpichev I. P. Dependence of magnetic field parameters at the subsolar point of the magnetosphere on the interplanetary magnetic field according to the data of the THEMIS experiment. Geomagnetism and Aeronomy. 2012, vol. 52, no. 6, pp. 730-739. DOI:https://doi.org/10.1134/S0016793212060084.
22. Šafránková J., Němeček Z., Němec F., Montagud-Camps V., Verscharen D., Verdini A., Ďurovcová T. Anisotropy of magnetic field and velocity fluctuations in the solar wind. Astrophys. J. 2021, vol. 913, no. 2, 80, 12 p. DOI:https://doi.org/10.3847/1538-4357/abf6c9.
23. Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C., Guarnieri F.L., Gopalswamy N., Grande M., Kamide Y., Kasahara Y., Lu G., Mann I., McPherron R., Soraas F., Vasyliunas V. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006, vol. 111, A07S01. DOI:https://doi.org/10.1029/2005JA011273.
24. Vennerstroem S. Interplanetary sources of magnetic storms: A statistical study. J. Geophys. Res. 2001, vol. 106, no. A12, pp. 29,175-29,184. DOI:https://doi.org/10.1029/2001JA000004.
25. Veselovsky I.S., Dmitriev A.V., Suvorova A.V. Algebra and statistics of the solar wind. Cosmic Res. 2010, vol. 48, no. 2, pp. 113-128. DOI:https://doi.org/10.1134/S0010952510020012.
26. Vichare G., Alex S., Lakhina G.S. Some characteristics of intense geomagnetic storms and their energy budget. J. Geophys. Res. 2005, vol. 110, A03204. DOI:https://doi.org/10.1029/2004JA010418.
27. Wang X., Tu C.-Y., He J.-S., Wang L.-H. Ion-scale spectral break in the normal plasma beta range in the solar wind turbulence. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 68-75. DOI:https://doi.org/10.1002/2017JA024813.
28. Wu C.-C., Lepping R. P. Effect of solar wind velocity on magnetic cloud-associated magnetic storm intensity. J. Geophys. Res. 2002, vol. 107, iss. A11, 1346. DOI: 10.1029/ 2002JA009396.
29. Yermolaev Y.I., Yermolaev M.Y., Lodkina I.G., Nikolaeva N.S. Statistical investigation of heliospheric conditions resulting in magnetic storms. Cosmic Res. 2007, vol. 45, no.1, pp. 1-8. DOI:https://doi.org/10.1134/S0010952507010017.
30. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Catalog of large-scale solar wind phenomena during 1976-2000. Cosmic Res. 2009, vol. 47, no. 2, pp. 81-94. DOI:https://doi.org/10.1134/S0010952509020014.
31. Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Yu. Statistical study of interplanetary condition effect on geomagnetic storms. Cosmic Res. 2010a, vol. 48, no. 6, pp. 485-500. DOI:https://doi.org/10.1134/S0010952510060018.
32. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 2010b, vol. 28. pp. 2177-2186. DOI:https://doi.org/10.5194/angeo-28-2177-2010.
33. Yermolaev Y.I., Lodkina I.G., Dremukhina L.A., Yermolaev M.Y., Khokhlachev A.A. What solar-terrestrial link researchers should know about interplanetary drivers. Universe. 2021, vol. 7, 138. DOI:https://doi.org/10.3390/universe7050138.
34. Zhang J.-C., Liemohn M.W., Kozyra J.U., Thomsen M.F., Elliott H.A., Weygand J.M. A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J. Geophys. Res. 2006, vol. 111, A01104. DOI:https://doi.org/10.1029/2005JA011065.
35. Zotov O.D., Klain B.I. The trigger mode in the dynamics of the magnetosphere. Materialy 4 Vserossiskoi konferentsii s mezhdunarodnym uchastiem “Triggernye efecty v geosistemakh” [Proc. of the IV All-Russian Conference with International Participation “Trigger Effects in Geosystems”. Moscow, June 6-9, 2017]. Moscow, GEOS Publ., 2017, pp. 442-449. (In Russian).
36. Zotov O.D., Klain B.I., Kurazhkovskaya N.A. Peculiarities of the dynamics of the magnetosphere in the solar activity cycle. Materialy 12 mezhdunarodnoi shkoly-konferentsii “Problemy geocosmosa”. [Proc. of the 12th International School Conference “Problems of Geospace”. St. Petersburg, Peterhof, October 8-12, 2018]. St. Petersburg, VVM Publ., 2018, pp. 320-325. (In Russian).
37. Zotov O.D., Klain B.I., Kurazhkovskaya N.A. Influence of the solar wind parameter on statistical characteristics of the Ap index in the solar activity cycle. Solar-Terr. Phys. 2019, vol. 5, no. 4, pp. 46-52. DOI:https://doi.org/10.12737/stp-54201906.
38. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni (accessed September 8, 2020).
39. URL: http://www.wdcb.ru/stp/geomag/geomagnetic_storms.ru. html (accessed September 8, 2020).
40. URL: http://www.kakioka-jma.go.jp/obsdata/data-viewer (accessed January 19, 2021).