Иркутск, Россия
УДК 53 Физика
Показано, во-первых, что в плазме с давлением, так же как и в холодной плазме, альфвеновские волны, создаваемые начальным возмущением, генерируют течения плазмы и уменьшения напряженности магнитного поля, распространяющиеся вместе с этими волнами. Во-вторых, на начальной стадии своего взаимодействия альфвеновские волны генерируют медленные магнитозвуковые (ММЗ) волны, распространяющиеся вдоль магнитного поля. Такие результаты позволяют предположить, что, по меньшей мере, часть наблюдаемых в хвосте магнитосферы быстрых потоков плазмы может быть одним из проявлений распространяющихся альфвеновских волн как в областях магнитосферы с холодной плазмой, так и в областях магнитосферы с плазмой с давлением. Они дают также потенциальную возможность определения положения источника альфвеновского возмущения по результатам наблюдения альфвеновских волн и генерируемых ими ММЗ-волн.
альфвеновские волны, быстрые потоки плазмы, ММЗ-волны
1. Дмитриенко И.С. Возмущения второго порядка в альфвеновских волнах в приближении холодной плазмы Солнечно-земная физика. 2019. Т. 5, № 2. С. 89-96. DOI:https://doi.org/10.12737/szf-52201912.
2. Birn J., Liu Y., Daughton W., et al. Reconnection and interchange instability in the near magnetotail. Earth, Planets and Space. 2015. Vol. 67, no. 1. P. 67-110. DOI:https://doi.org/10.1186/s40623-015-0282-3.
3. Cao J.B., Ma Y.D., Parks G., et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. J. Geophys. Res.: Space Phys. 2006. Vol. 111, iss. A4. A04206. DOI:https://doi.org/10.1029/2005JA011322.
4. Dmitrienko I.S. Nonlinear effects in Alfvén resonance. J. Plasma Phys. 1997. Vol. 57, no. 2. P. 311-326. DOI:https://doi.org/10.1017/S0022377896004965.
5. Dmitrienko I.S. Nonlinear non-stationary Alfvén resonance. J. Plasma Phys. 1999. Vol. 62, no. 02. P. 145-164. DOI:https://doi.org/10.1017/S0022377899007758.
6. Dmitrienko I.S. Nonlinear nonstationary Alfvén resonance in a finite-pressure plasma. Plasma Phys. Rep. 2007. Vol. 33, no. 7. P. 567-578. DOI:https://doi.org/10.1134/S1063780X07070069.
7. Dmitrienko I.S. Formation of accelerated ion flows in Alfvén disturbances of the magnetotail. Geomagnetism and Aeronomy. 2011. Vol. 51, no. 8. P. 1160-1164. DOI:https://doi.org/10.1134/S0016793211080032.
8. Dmitrienko I.S. Evolution of FMS and Alfvén waves produced by the initial disturbance in the FMS waveguide. J. Plasma Phys. 2013. Vol. 79, no. 1. P. 7-17. DOI:https://doi.org/10.1017/S0022377812000608.
9. Du A.M., Nakamura R., Zhang T.L., et al. Fast tailward flows in the plasma sheet boundary layer during a substorm on 9 March 2008: THEMIS observations. J. Geophys. Res.: Space Phys. 2011. Vol. 116, iss. A3. A03216. DOI:https://doi.org/10.1029/2010JA015969.
10. Fruhauff D., Glassmeier K.-H. Statistical analysis of magnetotail fast flows and related magnetic disturbances. Ann. Geophys. 2016. Vol. 34. P. 399-409. DOI:https://doi.org/10.5194/angeo-34-399-2016.
11. Keiling A. Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci. Rev. 2009. Vol. 142, iss. 1-4. P. 73-156. DOI:https://doi.org/10.1007/s11214-008-9463-8.
12. Keiling A., Wygant J.R., Cattell C., et al. Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms. Geophys. Res. Lett. 2000. Vol. 27, iss. 19. P. 3169-3172. DOI:https://doi.org/10.1029/2000GL000127.
13. Keiling A., Parks G.K., Wygant J.R., et al. Some properties of Alfvén waves: observations in the tail lobes and the plasma sheet boundary layer. J. Geophys. Res.: Space Phys. 2005. Vol. 110, iss. A10. A10S11. DOI:https://doi.org/10.1029/2004JA010907.
14. Klimushkin D.Yu., Mager P.N., Pilipenko, V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth. Planets and Space. 2012. Vol. 64, iss. 9. P. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.
15. Lee D.Y. Ballooning instability in the tail plasma sheet. Geophys. Res. Lett. 1998. Vol. 25, iss. 21. P. 4095-4098. DOI:https://doi.org/10.1029/1998GL900105.
16. Leonovich A.S., Kozlov D.A. On balooning instability in current sheets. Plasma Physics and Controlled Fusion. 2013. Vol. 55, no. 8. P. 085013. DOI:https://doi.org/10.1088/0741-3335/55/8/085013.
17. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: Influence of a transition layer. Ann. Geophys. 2003. Vol. 21, iss. 5. P. 1083-1093. DOI:https://doi.org/10.5194/angeo-21-1083-2003.
18. Mager P.N., Klimushkin D.Yu. Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma. Plasma Physics and Controlled Fusion. 2017. Vol. 59, iss. 9. 095005. DOI:https://doi.org/10.1088/1361-6587/aa790c.
19. Mazur V.A., Chuiko D.A. Kelvin-Helmholtz instability on the magnetopause, magnetohydrodynamic waveguide in the outer magnetosphere, and Alfvén resonance deep in the magnetosphere. Plasma Phys. Rep. 2013. Vol. 39, no. 6. P. 488-503. DOI:https://doi.org/10.1134/S1063780X13060068.
20. Mazur N.G., Fedorov E.N., Pilipenko V.A. MHD Waveguides in Space Plasma. Plasma Phys. Rep. 2010. Vol. 36, no. 7, P. 609-626. DOI:https://doi.org/10.1134/S1063780X10070081.
21. Pokhotelov O.A., Onishchenko O.G., Sagdeev R.Z., Treumann R.A. Nonlinear dynamics of inertial Alfvén waves in the upper ionosphere: Parametric generation of electrostatic convective cells. J. Geophys. Res.: Space Phys. 2003. Vol. 108, iss. A7. 1291. DOI:https://doi.org/10.1029/2003JA009888.
22. Pokhotelov O.A., Onishchenko O.G., Sagdeev R.Z., et al. Parametric interaction of kinetic Alfvén waves with convective cells. J. Geophys. Res.: Space Phys. 2004. Vol. 109, iss. A3. A03305. DOI:https://doi.org/10.1029/2003JA010185.
23. Raj A., Phan T., Lin R.P., Angelopoulos V. Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. J. Geophys. Res.: Space Phys. 2002. Vol. 107, iss. A12. 1419. DOI:https://doi.org/10.1029/2001JA007547.
24. Takada T., Seki K., Hirahara M., et al. Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations. J. Geophys. Res.: Space Phys. 2005. Vol. 110, iss. A2. A02204. DOI:https://doi.org/10.1029/2004JA010395.
25. Takada T., Nakamura R., Baumjohann W., et al. Alfvén waves in the nearPSBL lobe: Cluster observations. Ann. Geophys. 2006. Vol. 24. P. 1001-1013. DOI:https://doi.org/10.5194/angeo-24-1001-2006.
26. Walker A.D.M. Excitation of field line resonances by sources outside the magnetosphere. Ann. Geophys. 2005. Vol. 23, no. 1. P. 3375-3388. DOI:https://doi.org/10.5194/angeo-23-3375-2005.
27. Wright A.N., Allan W. Simulations of Alfvén waves in the geomagnetic tail and their auroral signatures. J. Geophys. Res. 2008. Vol. 113, iss. A2. A02206. DOI:https://doi.org/10.1029/2007JA012464.
28. Zhang L.Q., Baumjohann W., Khotyaintsev Yu.V., et al. BBF Deceleration Down-Tail of X< −15 RE From MMS Observation. J. Geophys. Res.: Space Phys. 2020. Vol. 125, iss. 2. DOI:https://doi.org/10.1029/2019JA026837.
29. Zhao J.S., Wu D.J., Yu M.Y., Lu J.Y. Convective cell generation by kinetic Alfvén wave turbulence in the auroral ionosphere. Phys. Plasmas. 2012. Vol. 19, no. 6. 062901. DOI:https://doi.org/10.1063/1.4729327.
30. Zong Q.-G., Fu S.Y., Baker D.N., et al. Earthward flowing plasmoid: Structure and its related ionospheric signature. J. Geophys. Res.: Space Phys. 2007. Vol. 112, iss. A7. A07203. DOI:https://doi.org/10.1029/2006JA012112.