Иркутск, Иркутская область, Россия
Иркутск, Иркутская область, Россия
Геофизический центр РАН
Иркутск, Россия
с 01.01.2013 по 01.01.2021
Иркутск, Иркутская область, Россия
Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Магнитогидродинамические (МГД) волны играют ключевую роль в процессах, протекающих в плазменных образованиях в атмосфере Солнца и звезд, а также в магнитосфере Земли и других планет. В настоящий момент известно, что в этих системах имеют место как схожие волновые явления, так и уникальные для каждой из сред. Изучение МГД-волн и сопутствующих явлений в магнитосферной физике и физике Солнца происходит в основном независимо, несмотря на то, что свойства этих сред во многом схожи, а физические основы генерации и распространения волн в них одинаковы. Создание единого подхода к изучению этих явлений на Солнце и в земной магнитосфере открывает перспективы дальнейшего развития и интеграции этих научных направлений. В обзоре рассмотрено текущее состояние исследований МГД-волн в атмосфере Солнца и магнитосфере Земли. Приведены особенности сред, в которых распространяются колебания, их структура, масштабы и типичные параметры. Дано описание основных теоретических моделей, в рамках которых принято изучать поведение волн, их преимущества и ограничения. Сравниваются характеристики различных типов МГД-волн применительно к солнечной атмосфере и земной магнитосфере. Кроме того, представлена информация о методах наблюдений и инструментах, используемых для получения информации о волнах в различных средах.
магнитная гидродинамика, МГД-волны, альфвеновские волны, быстрый магнитный звук, медленный магнитный звук, магнитосфера, УНЧ-волны, хромосфера, солнечная корона, активные области, солнечная активность
1. Алтынцев А.Т., Лесовой С.В., Глоба М.В. и др. Много-волновый сибирский радиогелиограф. Солнечно-земная физика. 2020. Т. 6, № 2. С. 37-50. DOI:https://doi.org/10.12737/szf-62202003.
2. Ахиезер А.И., Ахиезер И.А., Половин Р.В. и др. Электродинамика плазмы. М.: Наука, 1974. 720 с.
3. Баранов А.В, Баранова Н.Н., Лазарева Л.Ф. Особенности кроссовер-эффекта в полутени солнечного пятна. Результаты наблюдений. Солнечная активность и ее влияние на Землю. 2008. Вып. 11. С. 13-23.
4. Брагинский С.И. Явления переноса в плазме. Вопросы теории плазмы. Вып. 1. Ред. М.А. Леонтович. М: Госатомиздат, 1963. С. 183-272.
5. Бурдо О.С., Черемных О.К., Верхоглядова О.П. Изучение баллонных мод во внутренней магнитосфере Земли. Известия академии наук. Сер. физ. 2000. Т. 64, № 9. С. 1896-1900.
6. Вайсберг О.Л., Смирнов В.Н. Взаимодействие солнеч-ного ветра с внешней магнитосферой Земли. Плазменная гелиогеофизика. М.: Физматлит, 2008. С. 378-422.
7. Волков Т.Ф. Гидродинамическое описание сильно разряженной плазмы. Вопросы теории плазмы. Вып. 4. Ред. М.А. Леонтович. М: Атомиздат, 1964. С. 3-19.
8. Гопасюк О.С. Исследования Солнца в Крыму. Известия КрАО. 2016. Т. 112. С. 126-132.
9. Григорьев В.М., Демидов М.Л., Колобов Д.Ю. и др. Проект крупного солнечного телескопа с диаметром зеркала 3 м. Солнечно-земная физика. 2020. Т. 6, № 2. С. 19-36. DOI:https://doi.org/10.12737/szf-62202002.
10. Гульельми А.В., Довбня Б.В. Гидромагнитное излучение межпланетной плазмы. Письма в ЖЭТФ. 1973. Т. 18, Вып. 10. С. 601-604.
11. Гульельми А.В., Золотухина Н.А. Возбуждение альф-веновских колебаний магнитосферы асимметричным кольцевым током. Исследования по геомагнетизму, аэрономии и физике Солнца. 1980. Вып. 50. С. 129-138.
12. Гульельми А.В., Потапов А.С. Влияние межпланетного магнитного поля на УНЧ-колебания ионосферного резона-тора. Космические исследования. 2017. Т. 55, № 4. С. 263-267. DOI:https://doi.org/10.7868/S0023420617030049.
13. Гульельми А.В., Потапов А.С. Частотно-модулиро-ванные ультранизкочастотные волны в околоземном космическом пространстве. Успехи физических наук. 2021. Т. 191, № 5. С. 475-491. DOI:https://doi.org/10.3367/UFNr.2020.06.038777.
14. Зайцев В.В., Степанов А.В. О природе пульсаций солнечного радиоизлучения IV типа. Колебания плазменного цилиндра (1). Исследования по геомагнетизму, аэрономии и физике Солнца. 1975. Вып. 37. С. 3-11.
15. Зеленый Л.М., Веселовский И.С. (Ред.) Плазменная гелиогеофизика. В 2 т. М.: Физматлит, 2008. 672 с.
16. Клейменова Н.Г. Геомагнитные пульсации. Модель космоса. Т. 1. М: КДУ, 2007. С. 611-626.
17. Клейменова Н.Г., Козырева О.В., Биттерли Ж. Длиннопериодные геомагнитные пульсации в области тета-авроры 11 мая 1983. Геомагнетизм и аэрономия. 1995. Т. 35. С. 44-48.
18. Климушкин Д.Ю., Магер П.Н., Челпанов М.А., Костарев Д.В. Взаимодействие долгопериодических УНЧ-волн и заряженных частиц в магнитосфере: теория и наблюдения (обзор). Солнечно-земная физика. 2021. Т. 7, № 4. С. 35-69. DOI:https://doi.org/10.12737/szf-74202105.
19. Ковадло П.Г., Лубков А.А., Бевзов А.Н. и др. Система автоматизации большого солнечного вакуумного телескопа. Автометрия. 2016. Т. 52, №2. С. 97-106. DOI: 10.15372/ AUT20160212.
20. Ковтюх А.С. Геокорона горячей плазмы. Космические исследования. 2001. Т. 39, № 6. С. 563-596. DOI: 10.1023/ A:1013074126604.
21. Костарев Д.В., Магер П.Н. Дрейфово-компрессионные волны, распространяющиеся в направлении дрейфа энергичных электронов в магнитосфере. Солнечно-земная физика. 2017. Т. 3, № 3. С. 20-29. DOI:https://doi.org/10.12737/szf-33201703.
22. Котова Г.А., Леонович А.С., Мазур В.А. и др. Внутренняя магнитосфера. Плазменная гелиогеофизика. М: Физматлит, 2008. С. 484-569.
23. Ландау Л.Д. О колебаниях электронной плазмы. ЖЭТФ. 1946. Т. 16. С. 574.
24. Леонович А.С., Мазур В.А. О резонансных свойствах магнитосферы Земли. VI Международная конференция «Солнечно-земные связи и физика предвестников землетрясений» 9-13 сентября, 2013. с. Паратунка. 2013. С. 111-118.
25. Леонович А.С., Мазур В.А. Линейная теория МГД-колебаний магнитосферы. М.: Физматлит, 2016. 480 с.
26. Лифшиц А.Е., Федоров Е.Н. Гидромагнитные колебания магнитосферно-ионосферного резонатора. Доклады АН СССР. 1986. Т. 287. С. 90-95.
27. Михайлова О.С., Климушкин Д.Ю., Магер П.Н. Современное состояние теории УНЧ-пульсаций диапазона Рс1 в плазме магнитосферы с тяжелыми ионами: обзор. Солнечно-земная физика. 2022. Т. 8, № 1. С. 3-18. DOI:https://doi.org/10.12737/szf-81202201.
28. Потапов А.С., Полюшкина Т.Н. Экспериментальное свидетельство прямого проникновения УНЧ-волн из солнечного ветра и возможного их влияния на ускорение электронов радиационного пояса. Солнечно-земная физика. 2010. Вып. 15. С. 28-34.
29. Самсонов А.А., Немечек З., Шафранкова Я., Елинек К. Почему полное давление на подсолнечной магнитопаузе отличается от динамического давления солнечного ветра? Космические исследования. 2013. Т. 51, № 1. С. 43-52. DOI:https://doi.org/10.7868/S0023420613010081.
30. Трифонов В.Д., Головко А.А., Скоморовский В.И. Наблюдения хромосферы в Байкальской астрофизической обсерватории с применением ПЗС-камер. Всероссийская конференция, посвященная 90-летию со дня рождения В.Е. Степанова, чл.-корр. РАН (Иркутск, 25-29 августа 2003 г.): Труды. 2004. С. 178-180.
31. Троицкая В.А., Гульельми А.В. Геомагнитные пульсации и диагностика магнитосферы. Успехи физических наук. 1969. Т. 97, № 3. С. 453-494. DOI:https://doi.org/10.3367/UFNr.0097.196903d.0453.
32. Троицкая В.А., Плясова-Бакунина Т.А., Гульельми А.В. Связь пульсаций Pc2−4 с межпланетным магнитным полем Доклады АН СССР. 1971. Т. 197, № 6. С. 1312-1314.
33. Челпанов М.А., Магер П.Н., Климушкин Д.Ю., Магер О.В. Наблюдения магнитосферных волн, распространяющихся в направлении дрейфа электронов, с помощью Екатерин-бургского когерентного радара. Солнечно-земная физика. 2019. Т. 5, № 1. С. 68-76. DOI:https://doi.org/10.12737/szf-51201907.
34. Altschuler M.D., Trotter D.E., Orrall F.Q. Coronal Holes. Solar Phys. 1972. Vol. 26, no. 2. P. 354-365. DOI: 10.1007/ BF00165276.
35. Anderson B.J., Engebretson M.J., Rounds S.P., et al. A statistical study of Pc 3-5 pulsations observed by the AMPTE/CCE Magnetic Fields Experiment, 1. Occurrence distributions. J. Geophys. Res. 1990. Vol. 95, no. A7. P. 10495-10523. DOI:https://doi.org/10.1029/JA095iA07p10495.
36. Anderson B.J., Erlandson R.E., Zanetti L.J. A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res. 1992. Vol. 97, no. A3. P. 3089-3101. DOI:https://doi.org/10.1029/91JA02697.
37. Anfinogentov S.A., Nakariakov V.M., Nisticò G. Decayless low-amplitude kink oscillations: A common phenomenon in the solar corona? Astron. Astrophys. 2015. Vol. 583. A136. DOI:https://doi.org/10.1051/0004-6361/201526195.
38. Anfinogentov S.A., Stupishin A.G., Mysh’yakov I.I., Fleishman G.D. Record-breaking coronal magnetic field in solar active region 12673. Astrophys. J. 2019. Vol. 880, no 2. P. L29. DOI:https://doi.org/10.3847/2041-8213/ab3042.
39. Angelopoulos V. The THEMIS Mission. Space Sci. Rev. 2008. Vol. 141. P. 5-34. DOI:https://doi.org/10.1007/s11214-008-9336-1.
40. Antonsen Jr. T.M., Lane B. Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Physics of Fluids. 1980. Vol. 23, no. 6. P. 1205-1214. DOI:https://doi.org/10.1063/1.863121.
41. Aschwanden M.J. The differential emission measure distribution in the multiloop corona. Astrophys. J. 2002. Vol. 580, no. 1. P. L79-L83. DOI:https://doi.org/10.1086/345469.
42. Aschwanden M.J., Nakariakov V.M., Melnikov V.F. Magnetohydrodynamic Sausage-Mode Oscillations in Coronal Loops. Astrophys. J. 2004. Vol. 600, iss. 1. P. 458-4. DOI: 10.1086/ 379789.
43. Baddeley L.J., Lorentzen D.A., Partamies N., et al. Equatorward propagating auroral arcs driven by ULF wave activity: Multipoint ground- and space-based observations in the dusk sector auroral oval. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 5591-5605. DOI:https://doi.org/10.1002/2016JA023427.
44. Balthasar H. The oscillatory behaviour of solar faculae. Solar Phys. 1990. Vol. 127. P. 289-292. DOI:https://doi.org/10.1007/BF00152168.
45. Banerjee D., Pérez-Suárez D., Doyle J.G. Broadening of SI VIII lines observed in the solar polar coronal holes. Astron. Astrophys. 1998. Vol. 339. P. 208-214.
46. Banerjee D., Teriaca L., Doyle J.G., Wilhelm K. Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 2009. Vol. 501, no. 3. P. L15-L18. DOI:https://doi.org/10.1051/0004-6361/200912242.
47. Baumjohann W., Junginger H., Haerendel G., Bauer O.H. Resonant Alfvén waves excited by a sudden impulse.J. Geophys. Res. 1984. Vol. 89, iss. A5. P. 2765-2769. DOI:https://doi.org/10.1029/JA089 iA05p02765.
48. Bemporad A., Abbo L. Spectroscopic signature of Alfvén waves damping in a polar coronal hole up to 0.4 solar radii. Astrophys. J. 2012. Vol. 751, no. 2. A110. DOI:https://doi.org/10.1088/0004-637X/751/2/110.
49. Berngardt O.I., Kutelev K.A., Kurkin V.I., et al. Bistatic sounding of high-latitude ionospheric irregularities using a decameter EKB radar and an UTR-2 radio telescope: first results. Radiophysics and Quantum Electronics. 2015, Vol. 58, no. 6. P. 390-408. DOI:https://doi.org/10.1007/s11141-015-9614-1.
50. Bogdan T.J. Sunspot oscillations: A review. Solar Phys. 2000. Vol. 192. P. 373-394. DOI:https://doi.org/10.1023/A:1005225214520.
51. Borovsky J.E. Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. 1993. Vol. 98, no. A4. P. 6101-6138. DOI:https://doi.org/10.1029/92JA02242.
52. Branduardi-Raymont G., Wang C., Escoubet C.P., et al. Imaging solar-terrestrial interactions on the global scale: The SMILE mission. EGU General Assembly, 19-30 Apr. 2021. 2021. EGU21-3230. DOI:https://doi.org/10.5194/egusphere-egu21-3230.
53. Brueckner G.E., Bartoe J.-D.F. The fine structure of the solar atmosphere in the far ultraviolet. Solar. Phys. 1974. Vol. 38, no. 1. P. 133-156. DOI:https://doi.org/10.1007/BF00161831.
54. Burch J.L. IMAGE mission overview. Space Sci. Rev. 2000. Vol. 91. P. 1-14. DOI:https://doi.org/10.1023/A:1005245323115.
55. Burch J.L., Moore T.E., Torbert R.B., Giles B.L. Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 2016. Vol. 199. P. 5-21. DOI:https://doi.org/10.1007/s11214-015-0164-9.
56. Catto P.J., Tang W.M., Baldwin D.E. Generalized gyrokinetics. Plasma Phys. 1981. Vol. 23, no. 7. P. 639-650. DOI:https://doi.org/10.1088/0032-1028/23/7/005.
57. Chelpanov A.A., Kobanov N.I. Methods for registering torsional waves in the lower solar atmosphere: Do observations support the theory? 44th COSPAR Scientific Assembly. 16-24 July. 2022. Vol. 44. P. 2502.
58. Chelpanov A.A., Kobanov N.I., Chupin S.A. Search for the observational manifestations of torsional Alfvén waves in solar faculae. Central European Astrophys. Bull. 2016a. Vol. 40. P. 29-34.
59. Chelpanov M.A., Mager P.N., Klimushkin D.Y., et al. Experimental evidence of drift compressional waves in the magnetosphere: An Ekaterinburg coherent decameter radar case study. J. Geophys. Res.: Space Phys. 2016b. Vol. 121, no. 2. P. 1315-1326. DOI:https://doi.org/10.1002/2015JA022155.
60. Chen L., Hasegawa A.A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 1974a. Vol. 79, no. 7. P. 1024-1032. DOI: 10.1029/ JA079i007p01024.
61. Chen L., Hasegawa A.A Theory of long-period magnetic pulsations 2. Impulse excitation of surface eigenmode. J. Geophys. Res. 1974b. Vol. 79, no. 7. P. 1033-1037. DOI: 10.1029/ JA079i007p01033.
62. Chisham G., Lester M., Milan S.E., et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surveys in Geophys. 2007. Vol. 28. P. 33-109. DOI:https://doi.org/10.1007/s10712-007-9017-8.
63. Constantinescu O.D., Glassmeier K.-H., Plaschke F., et al. THEMIS observations of duskside compressional Pc5 waves. J. Geophys. Res. 2009. Vol. 114. A00C25. DOI:https://doi.org/10.1029/2008 JA013519.
64. Cornwall J.M., Sims A.R., White R.S. Atmospheric density experienced by radiation belt protons, J. Geophys. Res. 1965. Vol. 70, no. 13. P. 3099-3111. DOI:https://doi.org/10.1029/JZ070i013p03099.
65. Cranmer S.R., van Ballegooijen A.A., Edgar R.J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 2007. Vol. 171, no. 2. P. 520-551. DOI:https://doi.org/10.1086/518001.
66. Crooker N.U., Siscoe G.L., Geller R.B. Persistent pressure anisotropy in the subsonic magnetosheath region. Geophys. Res. Lett. 1976. Vol. 3. P. 65-68. DOI:https://doi.org/10.1029/GL003i002p00065.
67. De Moortel I. Longitudinal Waves in Coronal Loops. Space Sci. Rev. 2009. Vol. 149, no. 1-4. P. 65-81. DOI: 10.1007/ s11214-009-9526-5.
68. De Pontieu B., Erdélyi R., De Moortel I. How to channel photospheric oscillations into the corona. Astrophys. J. 2005. Vol. 624. P. L61-L64. DOI:https://doi.org/10.1086/430345.
69. De Pontieu B., McIntosh S.W., Carlsson M. Chromospheric Alfvénic waves strong enough to power the solar wind. Science. 2007a. Vol. 318, iss. 5856. P. 1574. DOI:https://doi.org/10.1126/science. 1151747.
70. De Pontieu B., McIntosh S., Hansteen V. H., et al. A tale of two spicules: The impact of spicules on the magnetic chromosphere. Publications of the Astronomical Society of Japan. 2007b. Vol. 59. P. S655-S662. DOI:https://doi.org/10.1093/pasj/59.sp3.S655.
71. De Pontieu B., McIntosh S., Martinez-Sykora J., et al. Why is non-thermal line broadening of spectral lines in the lower transition region of the Sun independent of spatial resolution? Astrophys. J. Lett. 2015. Vol. 799, no. 1. L12. DOI:https://doi.org/10.1088/2041-8205/799/1/L12.
72. Denton R.E., Vetoulis G. Global poloidal mode. J. Geophys. Res. 1998. Vol. 103, iss. A4. P. 6729-6739. DOI: 10.1029/ 97JA03594.
73. Dmitrienko I.S., Mazur V.A. The spatial structure of quasicircular Alfvén modes of waveguide at the plasmapause: Interpretation of Pc1 pulsations. Planetary and Space Sci. 1992. Vol. 40, no. 1. P. 139-148. DOI:https://doi.org/10.1016/0032-0633(92)90156-I.
74. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Statistical characteristics of the heliospheric plasma and magnetic field at the Earth’s orbit during four solar cycles 20-23. Handbook on Solar Wind: Effects, Dynamics and Interactions. Ed. Hans E. Johannson. New York: NOVA Science Publ., Inc., 2009. P. 81-144. DOI:https://doi.org/10.48550/arXiv.1301.2929.
75. Eastmann T.E., Frank L.A. Observations of high-speed plasma flow near the Earth’s magnetopause: Evidence for reconnection? J. Geophys. Res. 1982. Vol. 87, no. A4. P. 2187-2201. DOI:https://doi.org/10.1029/JA087iA04p02187.
76. Edwin P.M., Roberts B. Wave propagation in a magnetic cylinder. Solar Phys. 1983. Vol. 88, no. 1-2. P. 179-191. DOI:https://doi.org/10.1007/BF00196186.
77. Feldman U., Dammasch I. E., Wilhelm K. The Morphology of the solar upper atmosphere during the sunspot minimum. Space Sci. Rev. 2000. Vol. 93. P. 411-472. DOI: 10.1023/ A:1026518806911.
78. Fox N.J., Velli M.C., Bale S.D., et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star. Space Sci. Rev. 2016. Vol. 204. P. 7-48. DOI:https://doi.org/10.1007/s11214-015-0211-6.
79. Ganushkina N.Y., Liemohn M.W., Dubyagin S. Current systems in the Earth’s magnetosphere. Rev. Geophys. 2018. Vol. 56. P. 309-332. DOI:https://doi.org/10.1002/2017RG000590.
80. Gauld J.K., Yeoman T.K., Davies J.A., et al. SuperDARN radar HF propagation and absorption response to the substorm expansion phase. Ann. Geophys. 2002. Vol. 20. P. 1631-1645. DOI:https://doi.org/10.5194/angeo-20-1631-2002.
81. Gelfreikh G.B., Shibasaki K. Radio magnetography of solar active regions using radio observations. Magnetic Fields and Solar Processes. ESA Special Publication. Ed. A. Wilson et al., 1999. P. 1339.
82. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012. Vol. 117, no. A9. A09213. DOI:https://doi.org/10.1029/2012JA017683.
83. Glassmeier K.-H., Buchert S., Motschmann U., et al. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities. Ann. Geophys. 1999. Vol. 17, no. 3. P. 338-350. DOI:https://doi.org/10.1007/s00585-999-0338-4.
84. Glassmeier K.-H., Mager P.N., Klimushkin D.Y. Concerning ULF pulsations in Mercury's magnetosphere. Geophys. Res. Lett. 2003. Vol. 30, no. 18. DOI:https://doi.org/10.1029/2003GL017175.
85. Greenwald R.A., Baker K.B., Dudeney J.R., et al. DARN/SuperDARN. Space Sci. Rev. 1995. Vol. 71, no. 1. P. 761-796. DOI:https://doi.org/10.1007/BF00751350.
86. Guglielmi A.V. Diagnostics of the magnetosphere and interplanetary medium by means of pulsations. Space Sci. Rev. 1974, vol. 16, pp. 331-345. DOI:https://doi.org/10.1007/BF00171562.
87. Guglielmi A.V., Potapov A.S., Russell C.T. The ion cyclotron resonator in the magnetosphere. JETP Lett. 2000. Vol. 72, no. 6. P. 298-300. DOI:https://doi.org/10.1134/1.1328441.
88. Guglielmi A., Kangas J., Potapov A. Quasiperiodic modulation of the Pc1 geomagnetic pulsations: An unsettled problem. J. Geophys. Res. 2001. Vol. 106, no. A11. P. 25847-25855. DOI:https://doi.org/10.1029/2001JA000136.
89. Guglielmi A., Potapov A., Dovbnya B. Five-minute solar oscillations and ion-cyclotron waves in the solar wind. Solar Phys. 2015. Vol. 290, iss. 10. P. 3023-3032. DOI: 10.1007/ s11207-015-0772-2.
90. Hannah I.G., Kontar E.P. Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 2012. Vol. 539. P. A146. DOI:https://doi.org/10.1051/0004-6361/201117576.
91. Hao Y.X., Zong Q.-G., Wang Y.F., et al. Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail. J. Geophys. Res.: Space Phys. 2014. Vol. 119, no. 10. P. 8262-8273. DOI:https://doi.org/10.1002/2014JA020023.
92. Hasegawa A. Drift mirror instability in the magnetosphere. Physics of Fluids. 1969. Vol. 12, no. 12. P. 2642-2650. DOI:https://doi.org/10.1063/1.1692407.
93. Hasegawa A., Chen L. Theory of magnetic pulsations. Space Sci. Rev. 1974. Vol. 16, P. 347-359. DOI:https://doi.org/10.1007/BF00171563.
94. Hassler D.M., Rottman G.J., Shoub E.C., Holzer T.E. Line Broadening of MG X lambda lambda 609 and 625 Coronal Emission Lines Observed above the Solar Limb. Astrophys. J. Lett. 1990. Vol. 348. L77. DOI:https://doi.org/10.1086/185635.
95. Hughes W.J., Southwood D.J. An illustration of modification of geomagnetic pulsation structure by the ionosphere. J. Geophys. Res. 1976a. Vol. 81, no. 19. P. 3241-3247. DOI:https://doi.org/10.1029/JA081i019p03241.
96. Hughes W.J., Southwood D.J. The screening of micropulsation signals by the atmosphere and ionosphere. J. Geophys. Res. 1976b. Vol. 81, no. 19. P. 3234-3240. DOI: 10.1029/ JA081i019p03234.
97. Jacobs J.A., Kato Y., Matsushita S., Troitskaya V.A. Classification of geomagnetic micropulsations. J. Geophys. Res. 1964. Vol. 69, no. 1. P. 180-181. DOI:https://doi.org/10.1029/JZ069i001p00180.
98. James M.K., Yeoman T.K., Mager P.N., Klimushkin D.Yu. Multiradar observations of substorm-driven ULF waves. J. Geophys. Res.: Space Phys. 2016. Vol. 121, P. 5213-5232. DOI:https://doi.org/10.1002/2015JA022102.
99. Keiling A., Wygant J. R., Cattell C., et al. Correlation of Alfvén wave Poynting flux in the plasma sheet at 4-7 RE with ionospheric electron energy flux. J. Geophys. Res. 2002. Vol. 107, no. A7. P. SMP24-1-SMP24-13. DOI:https://doi.org/10.1029/2001JA900140.
100. Kepko L., Spence H.E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res.: Space Phys. 2003. Vol. 108. 1257. DOI:https://doi.org/10.1029/2002JA009676.
101. Kepko L., Spence H.E., Singer H.J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 2002. Vol. 29, no. 8. P. 39-1-39-4. DOI:https://doi.org/10.1029/2001GL014405.
102. Khomenko E. Multi-Fluid Effects in Magnetohydrodynamics. Oxford Research Encyclopedia of Physics. 2020. DOI:https://doi.org/10.1093/acrefore/9780190871994.013.4.
103. Klimushkin D.Y. Resonators for hydromagnetic waves in the magnetosphere. J. Geophys. Res. 1998. Vol. 103, iss. A2. P. 2369-2375. DOI:https://doi.org/10.1029/97JA02193.
104. Klimushkin D.Yu., Mager P.N. Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: Gyrokinetic treatment. Planetary and Space Sci. 2011. Vol. 59. P. 1613-1620. DOI:https://doi.org/10.1016/j.pss.2011.07.010.
105. Klimushkin D.Yu., Mager P.N., Glassmeier K.-H. Toroidal and poloidal Alfvén waves with arbitrary azimuthal wavenumbers in a finite pressure plasma in the Earth's magnetosphere. Ann. Geophys. 2004. Vol. 22. P. 267-287. DOI:https://doi.org/10.5194/angeo-22-267-2004.
106. Klimushkin D.Yu., Mager P.N., Marilovtseva O.S. Parallel structure of Pc1 ULF oscillations in multi-ion magnetospheric plasma at finite ion gyrofrequency. J. Atmos. Solar-Terr. Phys. 2010. Vol. 72. P. 1327-1332. DOI:https://doi.org/10.1016/j.jastp.2010.09.019.
107. Klimushkin D.Yu., Mager P.N., Pilipenko V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth, Planets and Space. 2012. Vol. 64. P. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.
108. Klimushkin D.Y., Nakariakov V.M., Mager P.N., Cheremnykh O.K. Corrugation instability of a coronal arcade. Solar Phys. 2017. Vol. 292. 184. DOI:https://doi.org/10.1007/s11207-017-1209-x.
109. Kobanov N.I., Chelpanov A.A. Oscillations Accompanying a He I 10830 Å negative flare in a solar facula. II. Response of the transition region and corona. Solar Phys. 2019. Vol. 294, iss. 5. P. A58. DOI:https://doi.org/10.1007/s11207-019-1449-z.
110. Kobanov N.I., Makarchik D.V. Developing modulationless measuring of magnetic fields and differential velocities at Sayan observatory. Il Nuovo Cimento. 2002. Vol. 25, iss. 5-6. P. 695.
111. Kobanov N.I., Chelpanov A.A., Kolobov D.Y. Oscillations above sunspots from the temperature minimum to the corona. Astron. Astrophys. 2013. Vol. 554. A146. DOI:https://doi.org/10.1051/0004-6361/201220548.
112. Korotova G., Sibeck D., Engebretson M., et al. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1-2 May 2014. Ann. Geophys. 2016. Vol. 34. P. 985-998. DOI:https://doi.org/10.5194/angeo-34-985-2016.
113. Korotova G., Sibeck D., Thaller S., et al. Multisatellite observations of the magnetosphere response to changes in the solar wind and interplanetary magnetic field. Ann. Geophys. 2018. Vol. 36. P. 1319-1333. DOI:https://doi.org/10.5194/angeo-36-1319-2018.
114. Kostarev D.V., Mager P.N., Klimushkin D.Y. Alfvén wave parallel electric field in the dipole model of the magnetosphere: gyrokinetic treatment. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 2. e2020JA028611. DOI:https://doi.org/10.1029/2020JA028611.
115. Krieger A.S., Timothy A.F., Roelof E.C. A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 1973. Vol. 29, no 2. P. 505-525. DOI:https://doi.org/10.1007/BF00150828.
116. Le G., Chi P.J., Strangeway R.J., et al. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett. 2017. Vol. 44. P. 3456-3464. DOI:https://doi.org/10.1002/2017GL073048.
117. Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275, no. 1-2. P. 17-40. DOI:https://doi.org/10.1007/s11207-011-9776-8.
118. Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfvén waves in an axisymmetric magnetosphere (monochromatic oscillations). Planetary and Space Sci. 1989. Vol. 37, no. 9. P. 1095-1108. DOI:https://doi.org/10.1016/0032-0633(89)90081-0.
119. Leonovich A.S., Mazur V.A. A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere. Planetary and Space Sci. 1993. Vol. 41, no. 9. P. 697-717. DOI:https://doi.org/10.1016/0032-0633(93)90055-7.
120. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: Influence of a transition layer. Ann. Geophys. 2003. Vol. 21. P. 1083-1093. DOI:https://doi.org/10.5194/angeo-21-1083-2003.
121. Leonovich A.S., Kozlov D.A., Pilipenko V.A. Magnetosonic resonance in a dipole-like magnetosphere. Ann. Geophys. 2006. Vol. 24. P. 2277-2289. DOI:https://doi.org/10.5194/angeo-24-2277-2006.
122. Leonovich A.S., Klimushkin D.Y., Mager P.N. Experimental evidence for the existence of monochromatic transverse small-scale standing Alfvén waves with spatially dependent polarization. J. Geophys. Res.: Space Phys. 2015. Vol. 120, no. 7. P. 5443-5454. DOI:https://doi.org/10.1002/2015JA021044.
123. Mager P.N., Klimushkin D.Yu. Alfvén ship waves: high-m ULF pulsations in the magnetosphere generated by a moving plasma inhomogeneity. Ann. Geophys. 2008. Vol. 26, no. 6. P. 1653-1663. DOI:https://doi.org/10.5194/angeo-26-1653-2008.
124. Mager P.N., Klimushkin D.Y., Kostarev D.V. Drift-compressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 4915-4923. DOI:https://doi.org/10.1002/jgra.50471.
125. Mager P.N., Mikhailova O.S., Mager O.V., Klimushkin D.Y. Eigenmodes of the transverse Alfvénic resonator at the plasmapause: A Van Allen Probes case study. Geophys. Res. Lett. 2018. Vol. 45, no. 20. P. 10796-0804. DOI:https://doi.org/10.1029/2018GL079596.
126. Mandal S., Yuan D., Fang X., et al. Reflection of propagating slow magneto-acoustic waves in hot coronal loops: Multi-instrument observations and numerical modeling. Astrophys. J. 2016. Vol. 828, no. 2. P. 72. DOI:https://doi.org/10.3847/0004-637X/828/2/72.
127. Marcucci M.F., Bavassano Cattaneo M.B., Pallocchia G., et al. Energetic magnetospheric oxygen in the magnetosheath and its response to IMF orientation: Cluster observations. J. Geophys. Res.: Space Phys. 2004. Vol. 109, no. A7. A07203. DOI:https://doi.org/10.1029/2003JA010312.
128. Marsch E. Solar wind and kinetic heliophysics - Hannes Alfvén medal lecture at the EGU General Assembly 2018. 2018. Proc. 20th EGU General Assembly, EGU2018, 4-13 April, 2018, Vienna, Austria. P. 1790.
129. Mauk B.H., Fox. N.J., Kanekal S.G., et al. Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 2013. Vol. 179. P. 3-27. DOI:https://doi.org/10.1007/s11214-012-9908-y.
130. Mazur V.A. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind. Plasma Phys. Rep. 2010. Vol. 36, iss. 11. P. 953-963. DOI: 10.1134/ S1063780X10110048.
131. Mazur V.A., Chuiko D.A. Energy flux in 2-D MHD waveguide in the outer magnetosphere. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 1946-1959. DOI:https://doi.org/10.1002/2016JA023632.
132. McIntosh S.W., De Pontieu B., Carlsson M., et al. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature. 2011. Vol. 475. P. 477-480. DOI:https://doi.org/10.1038/nature10235.
133. McPherron R.L. Magnetic pulsations: Their sources and relation to solar wind and geomagnetic activity. Surveys in Geophys. 2005. Vol. 26. P. 545-592. DOI:https://doi.org/10.1007/s10712-005-1758-7.
134. Mead G.D., Fairfield D.H. A quantitative magnetospheric model derived from spacecraft magnetometer data. J. Geophys. Res. 1975. Vol. 80, iss. 4. P. 523-534. DOI:https://doi.org/10.1029/JA080i 004p00523.
135. Menk F.W. Magnetospheric ULF Waves: A Review. The Dynamic Magnetosphere. IAGA Special Sopron Book Series, Vol. 3. Eds. W. Liu. M. Fujimoto. Dordrecht: Springer Netherlands, 2011. P. 223-256. DOI:https://doi.org/10.1007/978-94-007-0501-2_13.
136. Mikhailova O.S., Mager P.N., Klimushkin D.Y. Two modes of ion-ion hybrid waves in magnetospheric plasma. Plasma Phys. and Controlled Fusion. 2020a. Vol. 62, no. 2. 025026. DOI:https://doi.org/10.1088/1361-6587/ab5b32.
137. Mikhailova O.S., Mager P.N., Klimushkin D.Y. Transverse resonator for ion-ion hybrid waves in dipole magnetospheric plasma. Plasma Phys. and Controlled Fusion. 2020b. Vol. 62, no. 9. 095008. DOI:https://doi.org/10.1088/1361-6587/ab9be9.
138. Mikhailova O.S., Smotrova E.E., Mager P.N. Resonant generation of an Alfvén wave by a substorm injected electron cloud: A Van Allen probe case study. Geophys. Res. Lett. 2022. Vol. 49, no. 19. e2022GL100433. DOI:https://doi.org/10.1029/2022GL100433.
139. Mikhailovskii A.B., Fridman A.M. Drift Waves in a finite-pressure plasma. Soviet Phys. - JETP. 1967. Vol. 24, no. 5. P. 965-974.
140. Miyoshi Y., Shinohara I., Takashima T., et al. Geospace exploration project ERG. Earth, Planets and Space. 2018. Vol. 70. 101. DOI:https://doi.org/10.1186/s40623-018-0862-0.
141. Morton R.J., Tomczyk S., Pinto R. Investigating Alfvénic wave propagation in coronal open-field regions. Nature Communications. 2015. Vol. 6. 7813. DOI:https://doi.org/10.1038/ncomms8813.
142. Motoba T., Ogawa Y., Ebihara Y. et al. Daytime Pc5 diffuse auroral pulsations and their association with outer magnetospheric ULF waves. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 8. e2021JA029218. DOI:https://doi.org/10.1029/2021JA029218.
143. Nakariakov V.M., Verwichte E. Coronal waves and oscillations. Living Rev. Solar Phys. 2005. Vol. 2. 3. DOI: 10.12942/ lrsp-2005-3.
144. Nakariakov V.M., Melnikov V.F., Reznikova V.E. Global sausage modes of coronal loops. Astron. Astrophys. 2003. Vol. 412. P. L7-L10. DOI:https://doi.org/10.1051/0004-6361:20031660.
145. Nakariakov V.M., Pascoe D.J., Arber T.D. Short quasi-periodic MHD waves in coronal structures. Space Sci. Rev. 2005. Vol. 121, iss. 1-4. P. 115-125. DOI:https://doi.org/10.1007/s11214-006-4718-8.
146. Nakariakov V.M., Anfinogentov S.A., Nisticò G., Lee D.-H. Undamped transverse oscillations of coronal loops as a self-oscillatory process. Astron. Astrophys. 2016a. Vol. 591. L5. DOI:https://doi.org/10.1051/0004-6361/201628850.
147. Nakariakov V.M., Pilipenko V., Heilig B., et al. Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 2016b. Vol. 200. P. 75-203. DOI:https://doi.org/10.1007/s11214-015-0233-0.
148. Nakariakov V.M., Anfinogentov S.A., Antolin P., et al. Kink Oscillations of coronal loops. Space Sci. Rev. 2021. Vol. 217, iss. 6. Article id.73. DOI:https://doi.org/10.1007/s11214-021-00847-2.
149. Nielsen E. The STARE system and some of its applications. The IMS Source Book: Guide to the International Magnetospheric Study Data Analysis. Eds. C.T. Russel, D.J. Southwood. Washington DC: AGU, 1982. P. 213-224.
150. Nishitani N., Ruohoniemi J.M., Lester M., et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Progress in Earth and Planetary Sci. 2019. Vol. 6, no. 1. 27. DOI:https://doi.org/10.1186/s40645-019-0270-5.
151. Ofman L., Wang T. Hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction. Astrophys. J. 2002. Vol. 580, no 1. P. L85-L88. DOI:https://doi.org/10.1086/345548.
152. Oimatsu S., Nosé M., Takahashi K., et al. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave. J. Geophys. Res.: Space Phys. 2018a. Vol. 123, no. 5. P. 3421-3435. DOI:https://doi.org/10.1029/2017JA025087.
153. Oimatsu S., Nosé M., Teramoto M., et al. Drift-bounce resonance between Pc5 pulsations and ions at multiple energies in the nightside magnetosphere: Arase and MMS observations. Geophys. Res. Lett. 2018b. Vol. 45, no. 15. P. 7277-7286. DOI:https://doi.org/10.1029/2018GL078961.
154. Papamastorakis I., Paschmann G., Sckopke N., et al. The magnetopause as a tangential discontinuity for large field rotation angles. J. Geophys. Res. 1984. Vol. 89, no. A1. P. 127-135. DOI:https://doi.org/10.1029/JA089iA01p00127.
155. Parker E.N. Interaction of the solar wind with the geomagnetic field. Physics of Fluids. 1958. Vol. 1. P. 171-187. DOI:https://doi.org/10.1063/1.1724339.
156. Pilipenko V.A. ULF waves on the ground and in space. J. Atmos. Terr. Phys. 1990. Vol. 52, no. 12. P. 1193-1209. DOI:https://doi.org/10.1016/0021-9169(90)90087-4.
157. Pilipenko V., Belakhovsky V., Murr D., et al. Modulation of total electron content by ULF Pc5 waves. J. Geophys. Res.: Space Phys. 2014. Vol. 119, no. 6. P. 4358-4369. DOI: 10.1002/ 2013JA019594.
158. Plowman J., Kankelborg C., Martens P. Fast differential emission measure inversion of solar coronal data. Astrophys. J. 2013. Vol. 771, no. 1. P. 2. DOI:https://doi.org/10.1088/0004-637X/771/1/2.
159. Pokhotelov O.A., Pilipenko V.A., Amata E. Drift anisotropy instability of a finite-β magnetospheric plasma. Planetary and Space Sci. 1985. Vol. 33, no. 11. P. 1229-1241. DOI: 10.1016/ 0032-0633(85)90001-7.
160. Ponomarenko P.P., Menk F.W., Waters C.L. Visualization of ULF waves in SuperDARN data. Geophys. Res. Lett. 2003. Vol. 30, no. 18. 1926. DOI:https://doi.org/10.1029/2003GL017757.
161. Potapov A.S., Mazur V.A. Pc3 pulsations: From the source in the upstream region to Alfvén resonances in the magnetosphere. Theory and observations. Solar Wind Sources of Magnetospheric Ultra Low Frequency Waves, Geophys. Monograph Ser. 1994. Vol. 81. Eds. M.J. Engebretson, K. Takahashi, M. Scholer. Washington DC: AGU, 1994. P. 135-145. DOI:https://doi.org/10.1029/GM081p0135.
162. Potapov A.S., Polyushkina T.N., Pulyaev V.A. Observations ofULF waves in the solar corona and in the solar wind at the Earth’s orbit. J. Atmos. Solar-Terr. Phys. 2013. Vol. 102. P. 235-242. DOI:https://doi.org/10.1016/j.jastp.2013.06.001.
163. Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales. Frontiers in Astron. and Space Sci. 2021. Vol. 7. DOI:https://doi.org/10.3389/fspas.2020.616635.
164. Ren J., Zong Q. G., Miyoshi Y., et al. A Comparative Study of ULF Waves’ Role in the Dynamics of Charged Particles in the Plasmasphere: Van Allen Probes Observation. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 7. P. 5334-5343. DOI:https://doi.org/10.1029/2018JA025255.
165. Ren J., Zong Q.-G., Zhou X.Z., et al. Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 10. P. 7954-7965. DOI:https://doi.org/10.1029/2019JA027009.
166. Reznikova V.E., van Doorsselaere T., Kuznetsov A.A. Perturbations of gyrosynchrotron emission polarization from solar flares by sausage modes: forward modeling. Astron. Astrophys. 2015. Vol. 575. A47. DOI:https://doi.org/10.1051/0004-6361/201424548.
167. Rimmele T.R., Warner M., Keil S.L., et al. The Daniel K. Inouye Solar Telescope - Observatory overview. Solar Phys. 2020. Vol. 295, iss. 12. A172. DOI:https://doi.org/10.1007/s11207-020-01736-7.
168. Rincon F., Rieutord M. The Sun's supergranulation. Living Rev. Solar Phys. 2018. Vol. 15. 6. DOI:https://doi.org/10.1007/s41116-018-0013-5.
169. Robustini C., Esteban Pozuelo S., Leenaarts J., de la Cruz Rodríguez J. Chromospheric observations and magnetic configuration of a supergranular structure. Astron. Astrophys. 2019. Vol. 621. P. A1. DOI:https://doi.org/10.1051/0004-6361/201833246.
170. Rubtsov A.V., Agapitov O.V., Mager P.N., et al. Drift Resonance of Compressional ULF Waves and Substorm-Injected Protons from Multipoint THEMIS Measurements. J. Geophys. Res.: Space Phys. 2018a. Vol. 123, no. 11. P. 9406-9419. DOI:https://doi.org/10.1029/2018JA025985.
171. Rubtsov A.V., Mager P.N., Klimushkin D.Y. Ballooning instability of azimuthally small scale coupled Alfvén and slow magnetoacoustic modes in two-dimensionally inhomogeneous magnetospheric plasma. Physics of Plasmas. 2018b. Vol. 25, no. 10. 102903. DOI:https://doi.org/10.1063/1.5051474.
172. Rubtsov A.V., Mager P.N., Klimushkin D.Y. Ballooning instability in the magnetospheric plasma: Two-dimensional eigenmode analysis. J. Geophys. Res.: Space Phys. 2020. Vol. 125, no. 1. e2019JA027024. DOI:https://doi.org/10.1029/2019JA027024.
173. Rubtsov A.V., Mikhailova O.S., Mager P.N., et al. Multi-spacecraft observation of the pre-substorm long-lasting poloidal ULF wave. Geophys. Res. Lett. 2021. Vol. 48, no. 23. e2021GL096182. DOI:https://doi.org/10.1029/2021GL096182.
174. Ruderman M.S., Roberts B. The damping of coronal loop oscillations. Astrophys. J. 2002. Vol. 577, no. 1. P. 475-486. DOI:https://doi.org/10.1086/342130.
175. Shi X., Baker J.B.H., Ruohoniemi J.M., et al. Long-lasting poloidal ULF waves observed by multiple satellites and high-latitude SuperDARN radars. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 10. P. 8422-8438. DOI:https://doi.org/10.1029/2018JA026003.
176. Shukhobodskaia D., Shukhobodskiy A.A., Erdélyi R. Flute oscillations of cooling coronal loops with variable cross-section. Astron. Astrophys. 2021. Vol. 649. Id. A36. 9 p. DOI:https://doi.org/10.1051/0004-6361/202140314.
177. Snodgrass H.B., Wilson P.R. Real and virtual unipolar regions. Solar Phys. 1993. Vol. 148, iss. 2. P. 179-194. DOI:https://doi.org/10.1007/BF00645084.
178. Soler R. Fluting modes in transversely nonuniform solar flux tubes. Astrophys. J. 2017. Vol. 850, iss. 2. Article id 114. 10 p. DOI:https://doi.org/10.3847/1538-4357/aa956e.
179. Song W.-B., Feng X.-S., Shen F. The heating of the solar transition region. Res. Astron. Astrophys. 2010. Vol. 10, iss. 6. P. 529-532. DOI:https://doi.org/10.1088/1674-4527/10/6/002.
180. Soto-Chavez A.R., Lanzerotti L.J., Manweiler J.W., et al. Observational evidence of the drift-mirror plasma instability in Earth’s inner magnetosphere. Physics of Plasmas. 2019. Vol. 26, no. 4. 042110. DOI:https://doi.org/10.1063/1.5083629.
181. Southwood D.J. Some features of field line resonances in the magnetosphere. Planetary and Space Sci. 1974. Vol. 22, no. 3. P. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.
182. Srivastava A., Shetye J., Murawski K., et al. High-frequency torsional Alfvén waves as an energy source for coronal heating. Scientific Rep. 2017. Vol. 7. Article id. 43147. DOI:https://doi.org/10.1038/srep43147.
183. Stephenson J.A.E., Walker A.D.M. HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys. Res. Lett. 2002. Vol. 29, no. 9. P. 8-1-8-4. DOI:https://doi.org/10.1029/2001GL014291.
184. Sterling A.C. Solar Spicules: A Review of recent models and targets for future observations. Solar Phys. 2000. Vol. 196, iss. 1. P. 79-111. DOI:https://doi.org/10.1023/A:1005213923962.
185. Takahashi K., Crabtree C., Ukhorskiy A.Y., et al. Van Allen Probes observations of symmetric stormtime compressional ULF waves. J. Geophys. Res.: Space Phys. 2022. Vol. 127. e2021JA030115. DOI:https://doi.org/10.1029/2021JA030115.
186. Thurgood J.O., Morton R.J., McLaughlin J.A. First direct measurements of transverse waves in solar polar plumes using SDO/AIA. Astrophys. J. Lett. 2014. Vol. 790, no. 1. P. L2. DOI:https://doi.org/10.1088/2041-8205/790/1/L2.
187. Uchida Y., Altschuler M.D., Newkirk Jr. G. Flare-produced coronal MHD-fast-mode wavefronts and Moreton's wave phenomenon. Solar Phys. 1973. Vol. 28, no. 2. P. 495-516. DOI:https://doi.org/10.1007/BF00152320.
188. van Doorsselaere T., Brady C.S., Verwichte E., Nakariakov V.M. Seismological demonstration of perpendicular density structuring in the solar corona. Astron. Astrophys. 2008. Vol. 491, no 2. P. L9-L12. DOI:https://doi.org/10.1051/0004-6361:200810659.
189. van Doorsselaere T., Verwichte E., Terradas J. The Effect of Loop Curvature on Coronal Loop Kink Oscillations. Space Sci Rev. 2009. Vol. 149. P. 299-324. DOI:https://doi.org/10.1007/s11214-009-9530-9.
190. Vetoulis G., Chen L. Global structures of Alfvén-ballooning modes in magnetospheric plasmas. Geophys. Res. Lett. 1994. Vol. 21. P. 2091-2094. DOI:https://doi.org/10.1029/94GL01703.
191. Walker A.D.M., Greenwald R.A. Pulsation structure in the ionosphere derived from aurora radar data. ULF Pulsations in the Magnetosphere. Ed. D.J. Southwood. Dordrecht: Springer, 1981. P. 111-127. DOI:https://doi.org/10.1007/978-94-009-8426-4_7.
192. Walker A.D.M, Greenwald R.A., Stuart W.F., Green C.A. Stare auroral radar observations of Pc 5 geomagnetic pulsations. J. Geophys. Res. 1979. Vol. 84, no. A7. P. 3373-3388. DOI:https://doi.org/10.1029/JA084iA07p03373.
193. Wang Y.-M. EIT Waves and fast-mode propagation in the solar corona. Astrophys. J. 2000. Vol. 543, no. 1. P. L89. DOI:https://doi.org/10.1086/318178.
194. Wang Y.-M. Coronal holes and open magnetic flux. Space Sci. Rev. 2009. Vol. 144. P. 383-399. DOI:https://doi.org/10.1007/s11214-008-9434-0.
195. Wang T.J., Solanki S.K., Curdt W., et al. Hot coronal loop oscillations observed with SUMER: Examples and statistics. Astron. Astrophys. 2003. Vol. 406, no. 3. P. 1105-1121. DOI:https://doi.org/10.1051/0004-6361:20030858.
196. Weberg M.J., Morton R.J., McLaughlin J.A. An automated algorithm for identifying and tracking transverse waves in solar images. Astrophys. J. 2018. Vol. 852, no. 1. P. 57. DOI:https://doi.org/10.3847/1538-4357/aa9e4a.
197. Welling D.T., André M., Dandouras I., et al. The Earth: Plasma sources, losses, and transport processes. Space Sci. Rev. 2015. Vol. 192. P. 145-208. DOI:https://doi.org/10.1007/s11214-015-0187-2.
198. Wiegelmann T., Solanki S.K., Borrero J.M., et al. Magnetic loops in the quiet Sun. Astrophys. J. Lett. 2010. Vol. 723. P. L185-L189. DOI:https://doi.org/10.1088/2041-8205/723/2/L185.
199. Yagova N., Heilig B., Fedorov E. Pc2-3 geomagnetic pulsations on the ground, in the ionosphere, and in the magnetosphere: MM100, CHAMP, and THEMIS observations. Ann. Geophys. 2015. Vol. 33, no. 1. P. 117-128. DOI:https://doi.org/10.5194/angeo-33-117-2015.
200. Yamamoto T., Hayashi K., Kokubun S., et al. Auroral activities and long-period geomagnetic pulsations. I. Pc5 pulsations and concurrent auroras in the dawn sector. II. Ps5 pulsations following auroral breakup in the premidnight hours. J. Geomagnetism and Geoelectricity. 1988. Vol. 40, iss. 5. P. 553-569. DOI:https://doi.org/10.5636/jgg.40.553.
201. Yan Y., Chen Z., Wang W., et al. Mingantu Spectral Radioheliograph for solar and space weather studies. Frontiers in Astronomy and Space Sciences. 2021. Vol. 8. P. 20. DOI:https://doi.org/10.3389/fspas.2021.584043.
202. Yeoman T.K., James M., Mager P.N., Klimushkin D.Y. SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res.: Space Phys. 2012. Vol. 117, no. A6. A06231. DOI:https://doi.org/10.1029/2012JA017668.
203. Yumoto K. Characteristics of localized resonance coupling oscillations of the slow magnetosonic wave in a non-uniform plasma. Planetary and Space Sci. 1985. Vol. 33. P. 1029-1036.
204. Zayer I., Solanki S.K., Stenflo J.O. The internal magnetic distribution and the diameters of solar magnetic elements. Astron. Astrophys. 1989. Vol. 211. P. 463-475.
205. Zhang H., Ai G., Sakurai T., Kurokawa H. Fine structures of chromospheric magnetic field and material flow in a solar active region. Solar Phys. 1991. Vol. 136, iss. 2. P. 269-293. DOI:https://doi.org/10.1007/BF00146536.
206. Zheleznyakov V.V., Zlotnik E.Y. Thermal cyclotron radiation from solar active regions. Symposium-International Astronomical Union. 1980. Vol. 86. P. 87-99.
207. Zong Q. Magnetospheric Response to solar wind forcing: ULF wave - particle interaction perspective. Ann. Geophys. 2022. Vol. 40, no.1. P. 121-150. DOI:https://doi.org/10.5194/angeo-40-121-2022.
208. Zong Q.-G., Zhou X.-Z., Wang Y.F., et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 2009. Vol. 114. A10204. DOI:https://doi.org/10.1029/2009JA014393.
209. Zong Q.-G, Rankin R., Zhou X. The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Modern Plasma Physics. 2017. Vol. 1. DOI:https://doi.org/10.1007/s41614-017-0011-4.
210. URL: https://www.nasa.gov/feature/goddard/2021/nasa-enters-the-solar-atmosphere-for-the-first-time-bringing-new-discoveries (дата обращения: 08.02.2022).
211. URL: http://ckp-rf.ru/ckp/3056 (дата обращения: 8 февраля 2022 г.).