Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Обнаружен отклик в узкой полосе 5–7 ГГц микроволнового излучения на появление корональной рентгеновской точки. Источник излучения в рентгеновском диапазоне представляет собой короткую петлю, расположенную в хвостовой части активной области и возникающую при пересоединении магнитных полей вблизи оснований высоких и низких петель, укорененных в близких порах противоположной полярности. Мощность энерговыделения мала, и в жестком рентгене генерации горячего компонента плазмы не наблюдалось. С помощью анализа изображений в мягком рентгеновском и крайнем ультрафиолетовом диапазонах показано, что микроволновое излучение имеет когерентную природу и генерируется на частоте около удвоенной плазменной частоты электронами с энергиями выше нескольких десятков килоэлектронвольт. Результат свидетельствует, что наблюдения микроволнового излучения обладают высоким диагностическим потенциалом обнаружения ускорительных процессов в слабых транзиентных событиях. Это следует учитывать при планировании наблюдений на радиогелиографах нового поколения, создаваемых в настоящее время.
Солнце, корональные точки, микроволновые всплески, когерентное излучение, струи
1. Лесовой С.В., Алтынцев А.Т., Кочанов А.А., и др. Сибирский радиогелиограф: первые результаты. Солнечно-земная физика. Т. 3, № 1. С. 3-16. DOI:https://doi.org/10.12737/23588.
2. Флейшман Г.Д., Мельников В.Ф. Солнечные миллисекундные радиоспайки. УФН. 1998. Т. 168. С. 1265. DOI:https://doi.org/10.3367/UFNr.0168.199812a.1265.
3. Altyntsev A.T., Grechnev V.V., Meshalkina N.S., Yan Y. Microwave type III-like bursts as possible signatures of magnetic reconnection. Solar Phys. 2007. Vol. 242, iss.1-2. P. 111-113. DOI:https://doi.org/10.1007/s11207-007-0207-9.
4. Altyntsev A.T., Fleishman G.D., Lesovoi S.V., Meshalkina N.S. Thermal to nonthermal energy partition at the early rise phase of solar flares. Astrophys. J. 2012. Vol. 758, 138. DOI:https://doi.org/10.1088/0004-637X/758/2/138.
5. Altyntsev A.T., Meshalkina N.S., Fedotova A.Ya., Myshyakov I.I. Background microwave emission and microflares in young active region 12635. Astrophys. J. 2020. Vol. 905, iss. 2, 149. DOI:https://doi.org/10.3847/1538-4357/abc54f.
6. Aschwanden M.J. Physics of the Solar Corona. An Introduction. Chichester: Praxis Publishing Ltd.; Berlin: Springer-Verlag, 2004. 924 p.
7. Benz A.O. Millisecond radio spikes. Solar Phys. 1986. Vol. 104. P. 99. DOI:https://doi.org/10.1007/BF00159950.
8. Benz A.O., Magun A., Stehling W., Su H. Electron beams in the low corona. Solar Phys. 1992. Vol. 141. P. 335. DOI:https://doi.org/10.1007/BF00155184.
9. Cheng X., Zhang J., Saar S.H., Ding M.D. Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 2012. Vol. 761, no. 1, 62. DOI:https://doi.org/10.1088/0004-637X/761/1/62.
10. Chiuderi Drago F., Alissandrakis C., Hagyard M. Microwave emission above steady and moving sunspots. Solar Phys. 1987. Vol. 112. P. 89. DOI:https://doi.org/10.1007/BF00148490.
11. Christe S., Hannah I.G., Krucker S., et al. RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys. J. 2008. Vol. 677. P. 1385. DOI:https://doi.org/10.1086/529011.
12. Fleishman G.D. Generation of resonance transition emissions in the solar atmosphere. Astronomy Lett. 2001. Vol. 27. P. 254. DOI:https://doi.org/10.1134/1.1358383.
13. Fleishman G.D., Nita G.M., Gary D.E. Evidence for resonant transition radiation in decimetric continuum solar bursts. Astrophys. J. 2005. Vol. 620. P. 506. DOI:https://doi.org/10.1086/427022.
14. Gary D.E., Hartl M.D., Shimizu T. Nonthermal radio emission from solar soft X-ray transient brightenings. Astrophys. J. 1997. Vol. 477. P. 958. DOI:https://doi.org/10.1086/303748.
15. Ginzburg V.L., Syrovatskii S.I. Cosmic magnetobremsstrahlung (synchrotron radiation). Ann. Rev. Astron. Astrophys. 1965. Vol. 3. P. 297. DOI:https://doi.org/10.1146/annurev.aa.03.090165.001501.
16. Gopalswamy N., Zhang J., Kundu M.R., et al. Fast time structure during transient microwave brightenings: evidence for nonthermal processes. Astrophys. J. 1997. Vol. 491. P. L115-L119. DOI:https://doi.org/10.1086/311063.
17. Gudiksen B.V., Nordlund A. An ab initio approach to solar coronal loops. Astrophys. J. 2005. Vol. 618, no. 2. P. 1031. DOI:https://doi.org/10.1086/426064.
18. Hannah I.G., Christe S., Krucker S., et al. RHESSI microflare statistics. II. X-ray imaging, spectroscopy, and energy distributions. Astrophys. J. 2008. Vol. 677. P. 704. DOI:https://doi.org/10.1086/529012.
19. Hannah I.G., Hudson H.S., Battaglia M., et al. Microflares and the statistics of X-ray flares. Space Sci. Rev. 2011. Vol. 159, 263. DOI:https://doi.org/10.1007/s11214-010-9705-4.
20. Klimchuk J.A. On solving the coronal heating problem. Solar Phys. 2006. Vol. 234, iss.1. P. 41. DOI:https://doi.org/10.1007/s11207-006-0055-z.
21. Kosugi T., Matsuzaki K., Sakao T., et al. The Hinode (Solar-B) Mission: An overview. Solar Phys. 2007. Vol. 243. P. 3. DOI:https://doi.org/10.1007/s11207-007-9014-6.
22. Kundu M.R., Schmahl E.J., Grigis P.C., et al. Nobeyama radio heliograph observations of RHESSI microflares. Astron. Astrophys. 2006. Vol. 451, iss. 2. P. 691. DOI:https://doi.org/10.1051/0004-6361:20053987.
23. Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275. P. 17. DOI:https://doi.org/10.1007/s11207-011-9776-8.
24. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. A 96-antenna radioheliograph. Res. Astron. Astrophys. 2014. Vol. 14, iss. 7. P. 864-868. DOI:https://doi.org/10.1088/1674-4527/14/7/008.
25. Li Y., Fleishman G. Radio emission from acceleration sites of solar flares. Astrophys. J. 2009. Vol. 701. P. L52. DOI:https://doi.org/10.1088/0004-637X/701/1/L52.
26. Lin R.P., Schwartz R.A., Kane S.R., et al. Solar hard X-ray microflares. Astrophys. J. 1984. Vol. 283. P. 421. DOI:https://doi.org/10.1086/162321.
27. Lopez Fuentes M.C., Klimchuk J.A. A simple model for the evolution of multi-stranded coronal loops. Astrophys. J. 2010. Vol. 719. P. 591. DOI:https://doi.org/10.1088/0004-637X/719/1/591.
28. Mandrini C.H., Démoulin P., Klimchuk J.A. Magnetic field and plasma scaling laws: Their implications for coronal heating models. Astrophys. J. 2000. Vol. 530. P. 999. DOI:https://doi.org/10.1086/308398.
29. Meegan C., Lichti G., Bhat P.N., et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 2009. Vol. 702. P. 791. DOI:https://doi.org/10.1088/0004-637X/702/1/791.
30. Meshalkina N.S., Altyntsev A.T., Zhdanov D.A., et al. Study of flare energy release using events with numerous type III-like bursts in microwaves. Solar Phys. 2012. Vol. 280. P. 537. DOI:https://doi.org/10.1007/s11207-012-0065-y.
31. Myachin D.Y., Nefedyev V.P., Uralov A.M., et al. Evolution of active regions in microwave emission at the stage of their initiation. Proc. Nobeyama Symp. 1999. Vol. 479. P. 89.
32. Nakajima H., Nishio M., Enome S., et al. The Nobeyama Radioheliograph. IEEE Proc. 1994. Vol. 82. P. 705.
33. Nefed’ev V.P., Agalakov B.V., Kardapolova N.N., Smol’kov G.Ya. The detection of the S-component sunspot source in the initial stage of active-region development. Ann. Geophys. 1993. Vol. 11, no. 7. P. 614.
34. Nindos A., Kundu M.R., White S.M. A Study of microwave selected coronal transient brightenings. Astrophys. J. 1999. Vol. 513. P. 983. DOI:https://doi.org/10.1086/306886.
35. Panesar N.K., Sterling A.C., Moore R.L. Magnetic flux cancellation as the origin of solar quiet-region pre-jet minifilaments. Astrophys. J. 2017. Vol. 844, 131. DOI:https://doi.org/10.3847/1538-4357/aa7b77.
36. Panesar N.K., Sterling A.C., Moore R.L Magnetic flux cancelation as the trigger of solar coronal jets in coronal holes. Astrophys. J. 2018. Vol. 853, 189. DOI:https://doi.org/10.3847/1538-4357/aaa3e9.
37. Parker E.N. Nanoflares and the solar X-ray corona. Astrophys. J. 1988. Vol. 330. P. 474. DOI:https://doi.org/10.1086/166485.
38. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275. P. 3. DOI:https://doi.org/10.1007/s11207-011-9841-3.
39. Porter J.G., Toomre J., Gebbie K.B. Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission. Astrophys. J. 1984. Vol. 283. P. 879. DOI:https://doi.org/10.1086/162375.
40. Rudenko G.V., Anfinogentov S.A. Very fast and accurate azimuth disambiguation of vector magnetograms. Solar Phys. 2014. Vol. 289. P. 1499. DOI:https://doi.org/10.1007/s11207-013-0437-y.
41. Schadee A., de Jager C., Svestka Z. Enhanced X-ray emission above 3.5-KEV in active regions in the absence of flares. Solar Phys. 1983. Vol. 89. P. 287. DOI:https://doi.org/10.1007/BF00217252.
42. Scherrer P.H., Schou J., Bush R.I., et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275. P. 207. DOI:https://doi.org/10.1007/s11207-011-9834-2.
43. Schou J., Scherrer P.H., Bush R.I., et al. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275. P. 229-259. DOI:https://doi.org/10.1007/s11207-011-9842-2.
44. Shibasaki K., Chiuderi-Drago F., Melozzi M., et al. Microwave, ultraviolet, and soft X-ray observations of hale region 16898. Solar Phys. 1983. Vol. 89. P. 307. DOI:https://doi.org/10.1007/BF00217253.
45. Shibata K., Nozawa S., Matsumoto R. Magnetic reconnection associated with emerging magnetic flux. Publ. Astron. Soc. Japan. 1992. Vol. 44. P. 265.
46. Shimizu T., Tsuneta S., Acton L.W., et al. Morphology of active region transient brightenings with the YOHKOH Soft X-Ray Telescope. Astrophys. J. 1994. Vol. 422. P. 906. DOI:https://doi.org/10.1086/173782.
47. Thomas R., Starr R., Crannell C. Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 1985. Vol. 95. P. 323. DOI:https://doi.org/10.1007/BF00152409.
48. Trubnikov B.A. Particle Interactions in a fully ionized plasma. Rev. Plasma Phys. 1965. Vol. 1. P. 105.
49. Warnecke J., Peter H. Data-driven model of the solar corona above an active region. Astron. Astrophys. 2019. Vol. 624. Id. L12. P. 5. DOI:https://doi.org/10.1051/0004-6361/201935385.
50. White S.M., Kundu M.R., Shimizu T., et al. The radio properties of solar active region soft X-ray transient brightenings. Astrophys. J. 1995. Vol. 450. P. 435. DOI:https://doi.org/10.1086/176153.
51. Wright P.J., Hannah I., Grefenstette B., et al. Microflare heating of an active region observed with NuSTAR, Hinode/XRT, and SDO/AIA. Astrophys. J. 2017. Vol. 844, 132. DOI:https://doi.org/10.3847/1538-4357/aa7a59.
52. Yasnov L.V., Bogod V.M., Fu Q., Yan Y. A study of non-thermal radio emission features using fine spectral BAO and high-sensitivity RATAN observations of a solar active region. Solar Phys. 2003. Vol. 215. P. 343. DOI:https://doi.org/10.1023/A:1025666810398.
53. Yokoyama T., Shibata K. Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun. Nature. 1995. Vol. 375. P. 42. DOI:https://doi.org/10.1038/375042a0.
54. Yokoyama T., Shibata K. Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model. Publ. Astron. Soc. Japan. 1996. Vol. 48. P. 353-376. DOI:https://doi.org/10.1093/pasj/48.2.353.
55. Young P.R., Tian H., Peter H., et al. Solar ultraviolet bursts. Space Sci. Rev. 2018. Vol. 214, iss. 8, 120, 39 p. DOI:https://doi.org/10.1007/s11214-018-0551-0.
56. Zaitsev V.V., Stepanov A.V. The plasma radiation of flare kernels. Solar Phys. 1983. Vol. 88. P. 297. DOI:https://doi.org/10.1007/BF00196194.
57. Zaitsev V.V., Kruger A., Hildebrandt J., Kliem B. Plasma radiation of power-law electrons in magnetic loops: Application to solar decimeter-wave continua. Astron. Astrophys. 1997. Vol. 328. P. 390.
58. Zhang J., Kundu M.R., White S.M., et al. Reconciling extreme-ultraviolet and radio observations of the Sun’s corona. Astrophys. J. 2001. Vol. 561. P. 396. DOI:https://doi.org/10.1086/323212.
59. Zhdanov D.A., Zandanov V.G. Broadband microwave spectropolarimeter. Central European Astrophysical Bulletin. 2011. Vol. 35. P. 223.