Иркутск, Россия
Иркутск, Россия
УДК 551.511.12 Гидростатика. Стандартная атмосфера
In this work, we perform a joint analysis of the spatial-temporal dynamics of ionospheric and stratospheric variability (with scales characteristic of internal gravity waves) at different longitudes of midlatitudes of the Northern Hemisphere. We analyze the winter periods of 2012–2013 and 2018–2019 when strong midwinter sudden stratospheric warmings (SSWs) occurred. An increase in the variability in the stratosphere is shown to occur in a limited latitude interval 40°–60° N in the region of existence of a winter circumpolar vortex. Under SSW conditions, the generation of wave disturbances in the stratosphere ceases manifesting itself in a significant decrease in the stratospheric variability index. Similar behavior is noted in the spatial-temporal dynamics of the index of the total electron content variability. The level of ionospheric variability at midlatitudes decreases significantly after SSW peaks. The decrease in the ionospheric variability can be explained by a reduction in wave generation in the stratosphere, associated with the destruction of the circumpolar vortex during SSWs
ionosphere, total electron content, variability, internal gravity waves, stratosphere, circumpolar vortex, sudden stratospheric warmings, atmosphere-ionosphere interaction
1. Afraimovich E.L., Edemskiy I K., Voeykov S.V., Yasyukevich Yu.V., Zhivetiev I.V. The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator. Ann. Geophys. 2009, vol. 27, pp. 1521-1525. DOI:https://doi.org/10.5194/angeo-27-1521-2009.
2. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Climate. 2007, vol. 20, pp. 449-469. DOI:https://doi.org/10.1175/JCLI3996.1.
3. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., Bychkov V.V., Grigorieva S.A., Panchenko V.A., Korenkova N.A., Mielich J. Ionospheric response to winter stratosphere/lower mesosphere jet stream in the Northern Hemisphere as derived from vertical radio sounding data. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 126-136. DOI:https://doi.org/10.1016/j.jastp.2017.08.033.
4. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, iss. 8, pp. 685-693. DOI:https://doi.org/10.1016/S1364-6826(00)00029-8.
5. Frissell N.A., Baker J.B.H., Ruohoniemi J.M., Greenwald R.A., Gerrard A.J., Miller E.S., West M.L. Sources and characteristics of medium-scale traveling ionospheric disturb-ances observed by high-frequency radars in the North Ameri-can sector. J. Geophys. Res. 2016, vol. 121, pp. 3722-3739. DOI:https://doi.org/10.1002/2015JA022168.
6. Gerrard A.J., Bhattacharya Y., Thayer J.P. Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event. Atmos. Chemistry Phys. 2011, vol. 11, pp. 11913-11917. DOI:https://doi.org/10.5194/acp-11-11913-2011.
7. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J.,. Peubey C, Radu R., et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 2020, vol. 146, pp. 1999-2049. DOI:https://doi.org/10.1002/qj.3803.
8. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996, vol. 14, pp. 917-940. DOI:https://doi.org/10.1007/s00585-996-0917-6.
9. Kaifler B., Lübken F.-J., Höffner J., Morris R.J., Viehl T.P. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69° S, 78° E), Antarctica. J. Geophys. Res. Atmos. 2015, vol. 120, pp. 4506-4521. DOI:https://doi.org/10.1002/2014JD022879.
10. Labitzke K. Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J. Atmos. Sci. 1972, vol. 29, pp. 756-766. DOI:https://doi.org/10.1175/1520-0469(1972)029<0756:TCITMA>2.0.CO;2.
11. Lastovicka J. Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, pp. 479-497. DOI:https://doi.org/10.1016/j.jastp.2005.01.018.
12. Liu X., Yue J., Xu J., Garcia R.R., Russell III, J.M., Mlynczak M., Wu D.L., Nakamura T. Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res. Atmos. 2017, vol. 122, pp. 6231-6249. DOI:https://doi.org/10.1002/2017JD026604.
13. Matsuno T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, vol. 28, pp. 1479-1494. DOI:https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
14. Nayak C., Yiğit E. Variation of small-scale gravity wave activity in the ionosphere during the major sudden stratospheric warming event of 2009. J. Geophys. Res.: Space Phys. 2019, vol. 124, pp. 470-488. DOI:https://doi.org/10.1029/2018JA026048.
15. Pancheva D., Mukhtarov P., Mitchell N.J., Merzlyakov E., Smith A.K., Andonov B., Singer W., Hocking W., Meek C., Manson A., Murayama Y. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J. Geophis. Res. 2008, vol. 113, D12105. DOI:https://doi.org/10.1029/2007JD009011.
16. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data. Adv. Space Res. 2015, vol. 55, pp. 2041-2047. DOI:https://doi.org/10.1016/j.asr.2014.08.001.
17. Rideout W., Coster A. Automated GPS processing for global total electron content data. GPS Solutions. 2006, vol 10, pp. 219-228. DOI:https://doi.org/10.1007/s10291-006-0029-5.
18. Schoeberl M.R. Stratospheric warmings: observations and theory. J. Geophys. Res.: Space Phys. 1978, vol. 16, pp. 521-538. DOI:https://doi.org/10.1029/RG016i004p00521.
19. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere. J. Atmos. Solar-Terr. Phys. 2015, vol. 136(B), pp. 201-215. DOI:https://doi.org/10.1016/j.jastp.2015.07.005.
20. Shpynev B.G., Chernigovskaya M.A., Khabituev D.S. Spectral characteristics of atmospheric waves generated by winter stratospheric jet stream in the Northern Hemisphere. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016, vol. 13, iss. 2, pp. 120-131. DOI:https://doi.org/10.21046/2070-7401-2016-13-2-120-131. (In Russian).
21. Shpynev B.G., Khabituev D.S., Chernigovskaya M.A., Zorkal’tseva O.S. Role of winter jet stream in the middle atmosphere energy balance. J. Atmos. Solar-Terr. Phys. 2019, vol. 188, pp. 1-10. DOI:https://doi.org/10.1016/j.jastp.2019.03.008.
22. Tolstikov M.V., Ratovsky K.G., Medvedeva I.V., Khabituev D.S. Estimated influence of stratospheric activity on the ionosphere according to measurements with ISTP SB RAS tools. Solar-Terr. Phys. 2021, vol. 7, iss. 4, pp. 79-84. DOI:https://doi.org/10.12737/stp-74202108.
23. Wu D.L., Waters J.W. Satellite observations of atmos-pheric variances: A possible indication of gravity waves. Geophys. Res. Lett. 1996, vol. 23, iss. 24, pp. 3631-3634. DOI:https://doi.org/10.1029/96GL02907.
24. Yasyukevich A.S. Features of short-period variability of total electron content at high and middle latitudes. Solar-Terr. Phys. 2021. Vol. 7, iss. 4. P. 71-78. DOI:https://doi.org/10.12737/stp-74202107.
25. Yasyukevich A.S., Chernigovskaya M.A., Mylnikova A.A., Shpynev B.G., Khabituev D.S. Studying the seasonal pattern of the ionospheric variability over Eastern Siberia and Far East region from the GPS/GLONASS data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017, vol. 14, iss. 3, pp. 249-262. DOI:https://doi.org/10.21046/2070-7401-2017-14-4-249-262. (In Russian).
26. Yasyukevich Yu., Mylnikova A., Vesnin A. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series. Sensors. 2020a, vol. 20, iss. 19, 5702. DOI:https://doi.org/10.3390/s20195702.
27. Yasyukevich Y.V., Kiselev A.V., Zhivetiev I.V., Edemskiy I.K., Syrovatskii S.V., Maletckii B.M., Vesnin A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 2020b, vol. 24, 69. DOI:https://doi.org/10.1007/s10291-020-00983-2.
28. Yasyukevich A., Medvedeva I., Sivtseva V., Cherni-govskaya M., Ammosov P., Gavrilyeva G. Strong interrelation between the short-term variability in the ionosphere, upper mesosphere, and winter polar stratosphere. Remote Sens. 2020c, vol. 12, 1588. DOI:https://doi.org/10.3390/rs12101588.
29. Yiğit E., Medvedev A.S. Role of gravity waves in vertical coupling during sudden stratospheric warmings. Geosci. Lett. 2016, vol. 3, 27. DOI:https://doi.org/10.1186/s40562-016-0056-1.
30. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on the mesosphere-lower thermosphere over mid latitudes in winter observed by a Fabry-Perot interferometer. Ann. Geophys. 2021, vol. 39, pp. 267-276. DOI:https://doi.org/10.5194/angeo-39-267-2021.
31. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed March 30, 2022).