Нижний Новгород, Нижегородская область, Россия
Нижний Новгород, Нижегородская область, Россия
Using electron density and temperature equations, we have modeled the dynamics of the electron density profile in the ionosphere due to the expulsion of plasma from localization regions of plasma waves, pumped by high-power HF radio waves, i.e. wave reflection and upper hybrid resonance regions. Causes of the ionospheric plasma expulsion are an increase in the gas-kinetic pressure due to the ohm heating of electrons by plasma waves, and the high-frequency pressure of plasma waves (ponderomotive expulsion). We have established that the ponderomotive expulsion develops more rapidly and is responsible for the formation of local regions of plasma density depletion near plasma resonances, whereas the gas-kinetic pressure increase is responsible for the formation of lower-density region, which is slower in time and more extended and smoother in height. The results obtained qualitatively agree with the data from the experiment conducted at the HAARP facility in 2014.
ionosphere, electron heating, powerful HF radiation, ponderomotive expulsion, profile modification
1. Benediktov E.A., Getmantsev G.G., Zyuzin V.A., Ignatiev Yu.A. Heating of the E-region of the ionosphere by powerful short-wave radio emission. Geomagnetism and Aeronomy. 1980, vol. 20, iss. 5, pp. 955-956, (In Russian).
2. Berezin I.V., Belyansky V.B., Budko N.I., Vaskov V.V., Dimant Y.S., Zyuzin V.A., et al. Diagnostics of the process of excitation of plasma oscillations by the field of a powerful radio wave, Geomagnetism and Aeronomy. 1991, vol. 31, iss. 5, pp. 874-880. (In Russian).
3. Bernhardt P.A., Siefring C.L., Briczinski S.J., McCarrick M., Michell R.G. Large ionospheric disturbances produced by the HAARP HF facility. Radio Sci. 2016, vol. 51, iss. 7, pp. 1081-1093. DOI: 10.1002/ 2015RS005883.
4. Boyko G.N., Vaskov V.V., Golyan S.F., Gurevich A.V., Dimant Ya.S., Zyuzin V.A., et al. Study of defocusing of radio waves under the influence of high-power radio emission. Izv. Vuz. Radiophysics. 1985, vol. 28, iss. 8, pp. 960-970. (In Russian).
5. Carlson H.C., Jensen J.B. HF accelerated electron fluxes, spectra, and ionization. Earth, Moon, and Planets. 2014. vol. 116, pp. 1-18. DOI: 10.1007/ s11038-014-9454-6.
6. Dimant Ya.S. Thermal and striction perturbation of the ionospheric plasma density in the resonance region of a powerful radio wave. Vzaimodeistvie vysokochastotnykh voln s ionosferoi [Interaction of HF Waves with the Ionosphere]. Moscow, IZMIRAN Publ., 1989, pp. 19-39. (In Russian).
7. Eliasson B. Full-scale simulations of ionospheric Langmuir turbulence. Modern Physics Letters B. 2013, vol. 27, no. 08, pp. 1330005-1330005-27. DOI:https://doi.org/10.1142/S0217984913300056.
8. Gaponov A.V., Miller M.A. On potential wells for charged particles in high-frequency fields. JETP Letters. 1958, vol. 34, no. 2, pp. 242-243. (In Russian).
9. Grach S.M., Trakhtengerts V.Yu. On the parametric excitation of ionospheric inhomogeneities elongated along the magnetic field. Izvestiya vuzov. Radiophysics. 1975, vol. 18, pp. 1288-1296. (In Russian).
10. Grach S.M., Mityakov N.A., Rapoport V.O., Trakhtengertz V.Yu. Thermal parametric turbulence in a plasma. Physica D: Nonlinear Phenomena. 1981, vol. 2, pp. 102-106. DOI:https://doi.org/10.1016/0167-2789(81)90063-4.
11. Grach S.M., Mityakov N.A., Schwartz M.M. Plasma density jump at the advanced stage of thermal parametric instability. Geomagnetism and Aeronomy. 1989, vol. 29, iss. 4, pp. 590-596. (In Russian).
12. Grach S.M., Komrakov G.P., Yurishchev M.A., Thide B., Leyser T.B., Carozzi T. Multifrequency Doppler radar observation of electron gyroharmonic effects during electromagnetic pumping of the ionosphere. Phys. Rev. Lett. 1997, vol. 78, pp. 883-886. DOI:https://doi.org/10.1103/PhysRevLett.78.883.
13. Grach S.M., Komrakov G.P., Schwartz M.M., Yurishchev M.A. On the dependence of the anomalous attenuation of probe waves on frequency under the influence of powerful radio emission on the ionosphere. Izvestiya vuzov. Radiophysics. 1998, vol. 41, pp. 678-966. (In Russian).
14. Grach S.M., Sergeev E.N., Mishin E.V., Shindin A.V. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Physics-Uspekhi. 2016, vol. 59, no. 11, pp. 1091-1128. DOI:https://doi.org/10.3367/UFNe.2016. 07.037868.
15. Gurevich A.V., Schwarzburg A.B. Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere [Nonlinear Theory of Radio Wave Propagation in the Ionosphere]. Moscow, Nauka Publ., 1973, 272 p. (In Russian).
16. Lobachevsky L.A., Gruzdev Yu.V., Kim V.Yu., Mikhaylova G.A, Panchenko V.A., Polimatidi V.P., et al. Observations of ionospheric modification by the Tromsø heating facility with the mobile diagnostic equipment of IZMIRAN. J. Atmos. Terr. Phys. 1992, vol. 54, iss. 1. pp. 75-85. DOI:https://doi.org/10.1016/0021-9169(92)90086-Z.
17. Mishin E., Watkins B., Lehtinen N., Eliasson B., Pedersen T., Grach S.M. Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res. Space Phys. 2016, vol. 121, pp. 3497-3524. DOI:https://doi.org/10.1002/2015JA021823.
18. Pedersen T., Gustavsson B., Mishin E., Kendall E., Mills T., Carlson H.C., Snyder A.L. Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 2010, vol. 37, L02106. DOI:https://doi.org/10.1029/2009GL041895.
19. Pedersen T., McCarrick M., Reinisch B., Watkins B., Hamel R., Paznukhov V., Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 2011, vol. 29, pp. 47-51.
20. Pitaevskii L.P. Electric forces in a transparent medium with dispersion. JETP Letters. 1960, vol. 39, pp. 1450-1458. (In Russian).
21. Sergeev E.N., Grach S.M., Kotov P.V., Komrakov G.P., Boyko G.N., Tokarev Yu.V. Diagnostics of the disturbed ionospheric region using broadband radio emission. Radiophysics. 2007, vol. 50, pp. 649-668. (In Russian).
22. Sergeev E.N., Grach S.M., Shindin A.V., Mishin E., Bernhardt P.A., Briczinski S., et al. Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 2013, vol. 110, 065002. DOI:https://doi.org/10.1103/PhysRevLett.110.065002.
23. Sergeev E.N., Shindin A.V., Grach S.M., Milikh G.M., Mishin E.V., Bernhardt P.A., et al. Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at the High Frequency Active Auroral Research Program heating facility. Radio Sci. 2016, vol. 51, pp. 1118-1130. DOI:https://doi.org/10.1002/2015RS005936.
24. Shindin A., Sergeev E., Grach S. Applications of broadband radio signals for diagnostics of electron density profile dynamics and plasma motion in the HF-pumped ionosphere. Radio Sci. 2012, vol. 47, RS0N04. DOI:https://doi.org/10.1029/2011RS004895.
25. Shindin A.V., Sergeev E.N., Grach S.M., Milikh G.M., Bernhardt P.A., Siefring C., McCarrick M.J. HF Induced modifications of the electron density profile in the Earth’s ionosphere using the pump frequencies near the fourth electron gyroharmonic. Remote Sensing. 2021, vol. 13, 4895. DOI:https://doi.org/10.3390/rs13234895.
26. Vaskov V.V., Dimant Ya.S. Influence of deformation of the normal profile of the ionospheric plasma on the anomalous absorption of a powerful radio wave in the resonant region, Geomagnetism and Aeronomy. 1989, vol. 29, pp. 373-377. (In Russian).
27. Vas’kov V.V., Gurevich A.V. Nonlinear resonant instability of a plasma in the field of an ordinary electromagnetic wave. Sov. Phys. -•JETP. 1976, vol. 42, iss. 1, pp. 91-97.
28. Vaskov V.V., Golyan S.F., Gruzdev Yu.V., Gurevich A.V., Dimant Y.S., Kim V.Yu., et al. Stimulated ionization of the upper ionosphere during the interaction of a powerful radio wave. JETP Letters. 1981, vol. 34, no. 11, pp. 582-585. (In Russian).
29. Vaskov V.V., Golyan S.F., Gurevich A.V., Dimant Ya.S., Zyuzin V.A., Kim V.Yu., et al. Excitation of an upper hybrid resonance in an ionospheric plasma by a powerful radio wave fiel. JETP Letters. 1986, vol. 43, no. 11, pp. 512-515. (In Russian).