WAVE ACTIVITY OF THE MESOSPHERE IN THE PLANETARY WAVE RANGE ACCORDING TO OH (3-1) EMISSION OBSERVATIONS AT MAIMAGA AND TIKSI STATIONS FOR 2015–2020
Аннотация и ключевые слова
Аннотация (русский):
The article compares the interannual variability of the atmosphere at the OH glow height, which can be associated with planetary wave propagation, at stations spaced in latitude. As a characteristic reflecting planetary wave activity we consider standard deviations of the average overnight temperature σpw from its monthly average after taking into account the seasonal variation. Joint mesopause temperature measurements at high latitudes at two optical stations Maimaga (63.04° N, 129.51° E) and Tiksi (71.58° N, 128.77° E) began in 2015. The stations are equipped with identical Shamrock (Andor) high image quality infrared spectrographs for registration of OH (3-1) in the near infrared region (~1.5 μm). The main result of studying the planetary wave activity during the 5-year period of simultaneous observations is that at Tiksi station it slightly (by about 1–2 K) exceeds that at Maimaga station. In average annual activity fluctuations, the presence of quasi-biennial oscillations is traced.

Ключевые слова:
planetary waves, mesopause region, hydroxyl
Список литературы

1. Atmosfera: spravochnik [Atmosphere: A handbook]. Leningrad, Gidrometeoizdat, 1991. 508 p. (In Russian).

2. Ammosov P.P., Gavrilyeva G.A. Infrared digital spectrograph for hydroxyl rotational temperature measurements. Instruments and Experimental Techniques. 2000, vol. 43, iss. 6, pp. 792-797.

3. Bittner M., Offermann D., Graef H.-H., Donner M., Hamilton K. An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, iss. 8-11, pp. 1147-1166. DOI:https://doi.org/10.1016/S1364-6826(02)00065-2.

4. Gavrilyeva G.A., Ammosov P.P., Koltovskoi I.I., Sivtseva V.I., Iumshanov N.N. The optic meridional network in Yakutia: The method of mesopause temperature measurement. AIP Confer. Proc. 2021, voi. 2328, 050010. DOI:https://doi.org/10.1063/5.0042255.

5. Holton J.R., Haynes P.H., McIntyre M.E., Douglass A.R., Rood R.B., Pfister L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, vol. 33, pp. 403-439. DOI:https://doi.org/10.1029/95RG02097.

6. Matsuno T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, vol. 28, iss. 8, pp. 1479-1494. DOI:https://doi.org/10.1175/1520-0469(1971)028<1479:admots>2.0.co;2.

7. Mies F.H. Calculated vibrational transition probabilities of OH(X2Π). J. Molec. Spectroscopy. 1974, vol. 53, iss. 2, pp. 150-188. DOI:https://doi.org/10.1016/0022-2852(74)90125-8.

8. Offermann D., Gusev O., Donner M., Forbes J.M., Hagan M., Mlynczak M.G., et al. Relative intensities of middle atmosphere waves. J. Geophys. Res. 2009, vol. 114, D06110. DOI:https://doi.org/10.1029/2008JD010662.

9. Perminov V.I., Semenov A.I., Medvedeva I.V., Pertsev N.N. Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes. Geomagnetism and Aeronomy. 2014, vol. 54, iss. 2, pp. 230-239. DOI:https://doi.org/10.1134/S0016793214020157.

10. Reisin E.R., Scheer J., Dyrland M.E., Sigernes F., Deehr C.S., Schmidt C., Hoppner K., et al. Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC). J. Atmos. Solar-Terr. Phys. 2014, vol. 119, pp. 71-82. DOI:https://doi.org/10.1016/j.jastp.2014.07.002.

11. Schoeberl M. Stratospheric warmings - observations and theory. Rev. Geophys. 1978, vol. 16, pp. 521-538. DOI: 10.1029/ RG016i004p00521.

12. Shefov N.N., Semenov A.I., Khomich V.Yu. Izluchenie verkhnei atmosfery - indikator ee struktury i dinamiki [Airglow as an Indicator of the Upper Atmospheric Structure and Dynamics]. Moscow, GEOS Publ., 2006, 741 p. (In Russian).

13. Smith A. Global dynamics of the MLT. Surv. Geophys. 2012, vol. 33, pp. 1177-1230. DOI:https://doi.org/10.1007/s10712-012-9196-9.

14. Yiğit E., Medvedev A.S. Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 2015, vol. 55, iss. 4, pp. 983-1003. DOI:https://doi.org/10.1016/j.asr.2014.11.020.

Войти или Создать
* Забыли пароль?