LATITUDINAL DISTRIBUTION OF SOLAR MICROFLARES AND HIGH-TEMPERATURE PLASMA AT SOLAR MINIMUM
Аннотация и ключевые слова
Аннотация (русский):
The paper analyzes the latitudinal distribution of high-temperature plasma (T>4 MK) and microflares on the solar disk during low solar activity in 2009. The distribution of A0.1–A1.0 microflares contains belts typical of ordinary flares of B class and higher. In total, we have registered 526 flares, most of which, about 96 %, occurred at high latitudes. About 4 % of microflares were found near the solar equator. We believe that they were formed by the residual magnetic field of previous solar cycle 23. Ordinary flares were almost not observed near the equator during this period. The number of microflares in the southern hemisphere was slightly higher than in the northern one. This differs from the distribution of ordinary flares for which the northern hemisphere was previously reported to be dominant.

Ключевые слова:
microflares, solar cycle, plasma heating
Список литературы

1. Abdel-Sattar W., Mawad R., Moussas X. Study of solar flares’ latitudinal distribution during the solar period 2002-2017: GOES and RHESSI data comparison. Adv. Space Res. 2018, vol. 62, no. 9, pp. 2701-2707. DOI:https://doi.org/10.1016/j.asr.2018.07.024.

2. Bell B. A Long-term north-south asymmetry in the location of solar sources of great geomagnetic storms. Smithsonian Contr. Astrophys. 1962, vol. 5, p. 203.

3. Bogachev S.A., Erkhova N.F. Measurement of energy distribution for low power nanoflares. Solar-Terrestrial Physics. 2023, vol. 9, iss. 1, pp. 3-8. DOI:https://doi.org/10.12737/stp-91202301.

4. Bogachev S.A., Ulyanov A.S., Kirichenko A.S., Loboda I.P., Reva А.А. Microflares and nanoflares in the solar corona. Physics-Uspekhi. 2020, vol. 63, iss. 8, pp. 783-800. DOI:https://doi.org/10.3367/UFNe.2019.06.038769.

5. Borovik A.V., Zhdanov A.A. Statistical studies of duration of low-power solar flares. Solar-Terrestrial Physics. 2018, vol. 4, iss. 2, pp. 8-16. DOI:https://doi.org/10.12737/stp-42201803.

6. Borovik A.V., Zhdanov A.A. Processes of energy release in low-power solar flares. Solar-Terrestrial Physics. 2019, vol. 5, iss. 4, pp. 3-9. DOI:https://doi.org/10.12737/stp-54201901.

7. Borovik A.V., Zhdanov A.A. Low-power solar flares of optical and X-ray wavelengths for solar cycles 21-24. Solar-Terrestrial Physics. 2020, vol. 6, iss. 3, pp. 16-22. DOI:https://doi.org/10.12737/stp-63202002.

8. Christe S., Hannah I.G., Krucker S., McTiernan J., Lin R.P. RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys. J. 2008, vol. 677, no. 2, p. 1385. DOI:https://doi.org/10.1086/529011.

9. Garcia H.A. Evidence for solar-cycle evolution of north-south flare asymmetry during solar cycle 20 and 21. Solar Phys. 1990, vol. 127, p. 185. DOI:https://doi.org/10.1007/BF00158522.

10. Gburek S., Sylwester J., Kowalinski M., Bakala J., Kordylewski Z., Podgorski P., Plocieniak S., et al. SphinX: The Solar Photometer in X-rays. Solar Phys. 2013, vol. 283, pp. 631-649. DOI:https://doi.org/10.1007/s11207-012-0201-8.

11. Golub L., Krieger A.S., Silk J.K., Timothy A.F., Vaiana G.S. Solar X-ray bright points. Astrophys. J. Lett. 1974, vol. 189, p. L93. DOI:https://doi.org/10.1086/181472.

12. Grechnev V.V., Kuzin S.V., Urnov A.M., Zhitnik I.A, Uralov A.M., Bogachev S.A., Livshits M.A., et al. Long-lived hot coronal structures observed with CORONAS-F/SPIRIT in the Mg XII line. Solar System Res. 2006, vol. 40, pp. 286-293. DOI:https://doi.org/10.1134/S0038094606040046.

13. Gryciuk M., Siarkowski M., Sylwester J., Gburek S., Podgorski P., Kepa A., Sylwester B., Mrozek T. Flare characteristics from X-ray light curves. Solar Phys. 2017, vol. 292, 77. DOI:https://doi.org/10.1007/s11207-017-1101-8.

14. Howard R. Studies of Solar Magnetic Fields. II: The Magnetic Fluxes. Solar Phys. 1974, vol. 38. pp. 59-67. DOI:https://doi.org/10.1007/BF00161823.

15. Joshi N.C., Bankoti N.S., Pande S., Pande B., Uddin W., Pandey K. Statistical analysis of soft X-ray solar flares during solar cycles 21, 22 and 23. New Astron. 2010, vol. 15, pp. 538-546. DOI:https://doi.org/10.1016/j.newast.2010.01.002.

16. Joshi B., Pant P., Manoharan P.K. North-South distribution of solar flares during cycle 23. J. Astrophys. Astron. 2006, vol. 27, p. 151-157. DOI:https://doi.org/10.1007/BF02702517.

17. Kirichenko A.S., Bogachev S.A. Long-duration plasma heating in solar microflares of X-ray class A1.0 and lower. Astron. Lett. 2013, vol. 39, pp. 797-807. DOI:https://doi.org/10.1134/S1063773713110042.

18. Kirichenko A.S., Bogachev S.A. Plasma heating in solar microflares: Statistics and analysis. Astrophys. J. 2017a, vol. 840, no. 1, pp. 45-52. DOI:https://doi.org/10.3847/1538-4357/aa6c2b.

19. Kirichenko A.S., Bogachev S.A. The relation between magnetic fields and X-ray emission for solar microflares and active regions. Solar Phys. 2017b, vol. 292, pp.120-134. DOI:https://doi.org/10.1007/s11207-017-1146-8.

20. Knoska S., Krivsky L. Time-latitude occurence of flares in solar cycle No 20 (1965-1976). Bull. Astron. Inst. Czechoslov. 1978, vol. 29, p. 352.

21. Kuzin S.V., Bogachev S.A., Zhitnik I.A., Pertsov A.A., Ignatiev A.P., Mitrofanov A.M., Slemzin V.A., et al. TESIS experiment on EUV imaging spectroscopy of the Sun. Adv. Space Res. 2009, vol. 43, no. 6, pp. 1001-1006. DOI: 10.1016/ j.asr.2008.10.021.

22. Kuzin S.V., Zhitnik I.A., Shestov S.V., Bogachev S.A., Bugaenko O.I., Ignat’ev A.P., Pertsov A.A., Ulyanov A.S., et al. The TESIS experiment on the CORONAS-PHOTON spacecraft. Solar System Res. 2011, vol. 45, pp. 162-173. DOI:https://doi.org/10.1134/S0038094611020110.

23. Li K.J., Schmieder B., Li Q.Sh. Statistical analysis of the X-ray flares (M>=1) during the maximum period of solar cycle 22. Astron. Astrophys. Suppl. Ser. 1998, vol. 131, pp. 99-104. DOI:https://doi.org/10.1051/aas:1998254.

24. Pandey K.K., Yellaiah G., Hiremath K.M. Latitudinal distribution of soft X-ray flares and dispairty in butterfly diagram. Astrophys. Space Sci. 2015, vol. 356, pp. 215-224. DOI:https://doi.org/10.1007/s10509-014-2148-8.

25. Reva A., Shestov S., Bogachev S., Kuzin S. Investigation of Hot X-Ray Points (HXPs) using spectroheliograph Mg XII experiment data from CORONAS-F/SPIRIT. Solar Phys. 2012, vol. 276, pp. 97-112. DOI:https://doi.org/10.1007/s11207-011-9883-6.

26. Reva А.A., Kuzin S.V., Kirichenko A.S., Ulyanov A.S., Loboda I.P., Bogachev S.A. Monochromatic X-ray imagers of the Sun based on the Bragg crystal optics. Front. Astron. Space Sci. 2021, vol. 8. DOI:https://doi.org/10.3389/fspas.2021.645062.

27. Rao K.R. Latitudinal distributions of solar optical flares. International Symposium on Solar-Terrestrial Physics, Sao Paulo, Brazil, Proceedings. 1974, vol. 1, pp. 4-15.

28. Urnov A.M., Shestov S.V., Bogachev S.A., Goryaev F.F., Zhitnik I.A., Kuzin S.V. On the spatial and temporal characteristics and formation mechanisms of soft X-ray emission in the solar corona. Astron. Lett. 2007, vol. 33, pp. 396-410. DOI:https://doi.org/10.1134/S1063773707060059.

29. Verma V.K., Pande M.C., Wahab U. Energetic flare zones on the Sun. Solar Phys. 1987a, vol. 112, pp. 341-346. DOI:https://doi.org/10.1007/BF00148788.

30. Verma V.K., Joshi G.C. On the periodicities of sunspots and solar strong hard X-ray bursts. Solar Phys. 1987b, vol. 114, pp. 415-418. DOI:https://doi.org/10.1007/BF00167358.

31. Yadav R.S., Badruddin K.S. Solar latitudinal distribution of solar flares of different importances around the Sun. Indian J. Radio Space Phys. 1980, vol. 9, p. 155.

32. Yazev S.А., Ulianova M.М., Isaeva E.S. Complexes of activity on the Sun in solar cycle 21. Solar-Terrestrial Physics. 2021, vol. 7, iss. 4, pp. 3-9. DOI:https://doi.org/10.12737/stp-74202101.

33. Zavershinsky D.I., Bogachev S.A., Belov S.A., Ledentsov L.S. Method for searching nanoflares and their spatial distribution in the solar corona. Astron. Lett. 2022, vol. 48, no. 9, pp. 550-560. DOI:https://doi.org/10.1134/S1063773722090079.

34. Zhitnik I., Kuzin S., Afanas’ev A., Bugaenko O., Ignat’ev A., Krutov V., Mitrofanov A., Oparin S., Pertsov A., et al. XUV observations of solar corona in the SPIRIT experiment on board the CORONAS-F satellite. Adv. Space Res. 2003, vol. 32, pp. 473-477. DOI:https://doi.org/10.1016/S0273-1177(03)00351-X.

Войти или Создать
* Забыли пароль?