Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
We have studied oscillation processes in the quiet Sun outside a coronal hole at different levels of the solar chromosphere. The study was based on spectroscopic observations of ionized calcium lines (K, H, and 849.8 nm) obtained by the Sayan Solar Observatory’s Automated Solar Telescope (AST). Spectral analysis of time series for some parameters of the lines has been carried out. We have compared the results of this work with the results of our study of oscillation processes in quiet regions located at the base of a coronal hole. The oscillation power was found to be higher in the region of the quiet Sun outside a coronal hole. At the same time, for the regions under study there is a common tendency for the oscillation power to decrease with height for all frequency ranges, except for the low-frequency one, in most chromospheric structures. In structures with a weak magnetic field, the power increases with height to the lower chromosphere and decreases somewhat to the upper chromosphere.
chromosphere, CaII line profiles, oscillation processes
1. Abbasvand V., Sobotka M., Švanda M., Heinzel P., García-Rivas M., Denker C., Balthasar H., et al. Observational study of chromospheric heating by acoustic waves. Astron. Astrophys. 2020, vol. 642, A52. DOI:https://doi.org/10.1051/0004-6361/202038559.
2. Athay R.G. Radiative energy loss from the solar chromosphere and corona. Astrophys. J. 1966, vol. 146, pp. 223-240.
3. Ballester J.L., Alexeev I., Collados M., Downes T., Pfaff R.F., Gilbert H., Khodachenko M., et al. Partially ionized plasmas in astrophysics. Space Sci. Rev. 2018, vol. 214, iss. 2, A58. DOI:https://doi.org/10.1007/s11214-018-0485-6.
4. Ballester J.L., Soler R., Terradas J., Carbonell M. Nonlinear coupling of Alfvén and slow magnetoacoustic waves in partially ionized solar plasmas. Astron. Astrophys. 2020, vol. 641, A48, 17 p.DOI:https://doi.org/10.1051/0004-6361/202038220.
5. Beck C., Schmidt W., Rezaei R., Rammacher W. The signature of chromospheric heating in CaII H spectra. Astron. Astrophys. 2008, vol. 479, pp. 213-227. DOI:https://doi.org/10.1051/0004-6361:20078410.
6. Beck C., Khomenko E., Rezaei R., Collados M. The energy of waves in the photosphere and lower chromospheres. I. Velocity statistics. Astron. Astrophys. 2009, vol. 507, pp. 453-467. DOI:https://doi.org/10.1051/0004-6361/200911851.
7. Bel N., Leroy B. Analytical study of magneto-acoustic gravity wave. Astron. Astrophys. 1977, vol. 55, pp. 239-243.
8. Bello González N., Flores Soriano M., Kneer F., Okunev O. On the energy flux in acoustic waves in the solar atmosphere. Memorie della Societa Astronomica Italiana. 2010, vol. 81, pp. 757-762.
9. Bjørgen J.P., Sukhorukov A.V., Leenaarts J., Carlsson M., de la Cruz Rodríguez J., Scharmer G.B., Hansteen V.H. Three-dimensional modeling of the CaII H and K lines in the solar atmosphere. Astron. Astrophys. 2018, vol. 611, A62. DOI:https://doi.org/10.1051/0004-6361/201731926.
10. Carlsson M. Chromospheric modeling. ASP Conference Ser. 2006, vol. 354, pp. 291-300.
11. Carlsson M., Hansteen V.H., De Pontieu B., McIntosh S., Tarbell T.D., Shine D., Tsuneta S., et al. Can high frequency acoustic waves heat the quiet Sun chromosphere? Publ. Astron. Soc. Japan. 2007, vol. 59, pp. S663-S668.
12. Centeno R., Collados M., Trujillo Bueno J. Oscillations and wave propagation in different solar magnetic features. ASP Conference Ser. 2006, vol. 358, pp. 465-470.
13. Chelpanov A.A., Kobanov N.I., Kolobov D.Yu. Characteristics of oscillations in magnetic knots of solar faculae.Astronomy Rep. 2015, vol. 59, no. 10, pp. 968-973. DOI: 10.1134/ S1063772915090036.
14. Chelpanov A., Kobanov N., Chelpanov M., Kiselev A. Propagating oscillations in the lower atmosphere under coronal holes. Solar Phys. 2021, vol. 296, iss. 12, article id. 179, 13 p. DOI:https://doi.org/10.1007/s11207-021-01909-y.
15. Cowling T.G. The dissipation of magnetic energy in an ionized gas. MNRAS. 1956, vol. 116, pp. 114-124.
16. Cuntz M., Rammacher W., Musielak Z.E. Acoustic heating of the solar chromosphere: present indeed and locally dominant. Astrophys. J. 2007, vol. 657, pp. L57-L60.
17. Damé L., Gouttebroze P., Malherbe J.-M. Observation and analysis of intensity oscillations in the solar K-line. Astron. Astrophys. 1984, vol. 130, pp. 331-340.
18. DeForest C.E., Gurman J.B. Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. 1998, vol. 501, pp. L217-L220.
19. De Pontieu B., Erdélyi R., James S.P. Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature. 2004, vol. 430, pp. 536-539. DOI:https://doi.org/10.1038/nature02749.
20. Deubner F.-L., Fleck B. Dynamics of the solar atmosphere. III. Cell-network distinction of chromospheric oscillations. Astron. Astrophys. 1990, vol. 228, pp. 506-512.
21. Fossum A., Carlsson M. Response functions of the ultraviolet filters of TRACE and the detectability of high-frequency acoustic waves. Astrophys. J. 2005a, vol. 625, pp. 556-562.
22. Fossum A., Carlsson M. High-frecuency acoustic waves are not sufficient to heat the solar chromospheres. Nature. 2005b, vol. 435, pp. 919-921. DOI:https://doi.org/10.1038/nature03695.
23. Fossum A., Carlsson M. Determination of the acoustic wave flux in the lower solar chromospheres. Astrophys. J. 2006, vol. 645. pp. 579-592.
24. Gafeira R., Jafarzadeh S., Solanki S.K., Lagg A., van Noort M., Barthol P., Rodríguez J.B., et al. Oscillations on width and intensity of slender CaII H fibrils from SUNRISE/ SuFI. Astrophys J. Suppl. Ser. 2017, vol. 229, article id. 7, 6 p. DOI:https://doi.org/10.3847/1538-4365/229/1/7.
25. Goodman M.L. On the mechanism of chromospheric network heating and the condition for its onset in the sun and other solar-type stars. Astrophys. J. 2000, vol. 533, pp. 501-522.
26. Grigoryeva S.A., Turova I.P., Ozhogina O.A. Studying Ca II line profile shapes and dynamic processes in the solar chromospheres at the base of a coronal hole. Solar Phys. 2016, vol. 291, pp. 1977-2002. DOI:https://doi.org/10.1007/s11207-016-0951-9.
27. Gupta G.R., Subramanian S., Banerjee D., Madjarska M.S., Doyle J.G. Nature of quiet Sun oscillations using data from the Hinode, TRACE, and SOHO spacecraft. Solar Phys. 2013, vol. 282, pp. 67-86. DOI:https://doi.org/10.1007/s11207-012-0146-y.
28. Heggland L., Hansteen V. H., De Pontieu B., Carlsson M. Wave propagation and jet formation in the chromospheres. Astrophys. J. 2011, vol. 743, article id. 142, 27 p. DOI:https://doi.org/10.1088/0004-637X/743/2/142.
29. Jafarzadeh S., Wedemeyer S., Fleck B., Stangalini M., Jess D.B., Morton R.J., Szydlarski M., et al. An overall view of temperature oscillations in the SOLAR chromosphere with ALMA. Philosophical Transactions of the Royal Society A. 2021, vol. 379, 28 p. DOI:https://doi.org/10.1098/rsta.2020.0174.
30. Jefferies S.M., McIntosh S.W., Armstrong J.D., Bogdan T.J., Cacciani A., Fleck B. Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys. J. 2006, vol. 648, pp. L151-L155. DOI:https://doi.org/10.1086/508165.
31. Jess D.B., Morton R.J., Verth G., Fedun V.,•Grant S.D.T., Giagkiozis I. Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 2015, vol. 190, pp. 103-161. DOI:https://doi.org/10.1007/s11214-015-0141-3.
32. Judge P.G. New perspectives on the photosphere/corona interface (Keynote). ASP Conference Ser. 2009, vol. 415, pp. 7-14.
33. Judge P.G. The chromosphere: gateway to the corona?... Or the purgatory of solar physics? Memorie della Societa Astronomica Italiano. 2010, vol. 81, pp. 543-552.
34. Judge P.G., Tarbell T.D., Wilhelm K. A study of chromospheric oscillations using the SOHO and TRACE spacecraft. Astrophys. J. 2001, vol. 554, pp. 424-444.
35. Kayshap P., Murawski K., Srivastava A.K., Musielak Z.E., Dwivedi B.N. Vertical propagation of acoustic waves in the solar internetwork as observed by IRIS. MNRAS. 2018, vol. 479, pp. 5512-5521. DOI:https://doi.org/10.1093/mnras/sty1861.
36. Khodachenko M.L., Arber T.D., Rucker H.O., Hanslmeier A. Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 2004, vol. 422, pp. 1073-1084. DOI:https://doi.org/10.1051/0004-6361:20034207.
37. Khomenko E., Collados M. Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 2012, vol. 747, pp. 87-98. DOI:https://doi.org/10.1088/0004-637X/747/2/87.
38. Khomenko E., Santamaria I.C. Magnetohydrodynamic waves driven by p-modes. J. Physics Conf. Ser. 2013, vol. 440, iss. 1, article id. 012048.. DOI:https://doi.org/10.1088/1742-6596/440/1/012048.
39. Khomenko E., Centeno R., Collados M., Trujillo Bueno J. Channeling 5 minute photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes. Astrophys. J. 2008, vol. 676, pp. L85-L88.
40. Kobanov N.I. Lower chromospheres oscillations near 4 mHz. Astron. Astrophys. Trans. 2000, vol. 19, iss. 2, pp. 103-113. DOI: 1080/10556790008241354.
41. Kobanov N.I., Pulyaev V.A. Spatial distribution of oscillations in faculae. Solar Phys. 2011, vol. 268, pp. 329-334. DOI:https://doi.org/10.1007/s11207-010-9581-9.
42. Kopecký, M., Kuklin, G.V. Concerning the 11-year variation of average lifetime of sunspot groups. Issledovanija po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1971, iss. 2, pp. 167-179. (In Russian).
43. Leenaarts J., de la Cruz Rodríguez J., Danilovic S., Scharmer G., Carlsson M. Chromospheric heating during flux emergence in the solar atmosphere. Astron. Astrophys. 2018, vol. 612, A28. DOI:https://doi.org/10.1051/0004-6361/201732027.
44. Lites B.W., Rutten R.J., Kalkofen W. Dynamics of the solar chromosphere. I. Long-period network oscillations. Astrophys. J. 1993, vol. 414, pp. 345-356.
45. Martinez-Sykora J., De Pontieu B., Hansteen V., Carlsson M. The role of partial ionization effects in the chromosphere. Philosophical Transactions of the Royal Society A. 2015, vol. 373, iss. 2042, pp. 20140268-20140268. DOI:https://doi.org/10.1098/rsta.2014.0268.
46. McAteer R.T.J., Gallagher P.T., Williams D.R., Mathioudakis M., Bloomfield D.S., Phillips K.J.H., Keenan F.P. Observational evidence for mode coupling in the chromospheric network. Astrophys. J. 2003, vol. 587, pp. 806-817.
47. Mein N., Schmieder B. Mechanical flux in the solar chromospheres. III. Variation of the mechanical flux. Astron. Astrophys. 1981, vol. 97, pp. 310-316.
48. Molnar M.E., Reardon K.P., Cranmer S.R, Kowalski A.F., Chai Y., Gary D. High-frequency wave power observed in the solar chromosphere with IBIS and ALMA. Astrophys. J. 2021, vol. 920, article id. 125, 21 p. DOI:https://doi.org/10.3847/1538-4357/ac1515.
49. Ozhogina O.A., Teplitskaya R.B. Сenter-to-limb variation of CaII line brightness oscillations in the solar chromosphere. Astronomy Lett. 2013, vol. 39, no. 4, pp. 279-289. DOI:https://doi.org/10.1134/S1063773713030031.
50. Ozhogina O.A., Teplitskaya R.B. Center-to-limb variation of low-frequency CaII line brightness oscillations in the solar chromosphere. Astronomy Lett. 2014, vol. 40, no. 6, pp. 361-371. DOI:https://doi.org/10.1134/S1063773714060061.
51. Piddington J.H. Solar atmospheric heating by hydromagnetic waves. MNRAS. 1956, vol. 116, pp. 314-323.
52. Pietarila A., Socas-Navarro H., Bogdan T., Carlsson M., Stein R.F. Simulation of quiet-Sun waves in the CaII infrared triplet. Astrophys. J. 2006, vol. 640, pp. 1142-1152.
53. Rajaguru S.P., Sangeetha C.R., Tripathi D. Magnetic fields and the supply of low-frequency acoustic wave energy to the solar chromospheres. Astrophys. J. 2019, vol. 871, article id. 155, 15 p. DOI:https://doi.org/10.3847/1538-4357/aaf883.
54. Reardon K.P. The effects of atmospheric dispersion on high-resolution solar spectroscopy. Solar Phys. 2006, vol. 239, pp. 503-517. DOI:https://doi.org/10.1007/s11207-006-0283-2.
55. Reardon K.P., Uitenbroek H., Cauzzi G. The solar chromospheres at high resolution with IBIS. III. Comparison of CaII K and CaII 854.2 nm imaging. Astron. Astrophys. 2009, vol. 500, pp. 1239-1247. DOI:https://doi.org/10.1051/0004-6361/200811223.
56. Shibata K., Nakamura T., Matsumoto T., Otsuji K., Okamoto T.J., Nishizuka N., Kawate T., et al. Chromospheric anemone jets as evidence of ubiquitous reconnection. Science. 2007, vol. 318, pp. 1591-1594. DOI:https://doi.org/10.1126/science.1146708.
57. Shine R.A., Linsky J.L. Physical properties of solar chromospheric plages. II: Chromospheric plage models. Solar Phys. 1974, vol. 39, pp. 49-77.
58. Shoda M., Yokoyama T. High-frequency spicule oscillations generated via mode conversion. Astrophys. J. 2018, vol. 854, article id. 9, 10 p. DOI:https://doi.org/10.3847/1538-4357/aaa54f.
59. Simon G.W. A practical solution of the atmospheric dispersion problem. Astronom. J. 1966, vol. 71, no. 3, pp. 190-194.
60. Smith P.D., Sakai J.I. Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys. 2008, vol. 486, pp. 569-575. DOI:https://doi.org/10.1051/0004-6361:200809624.
61. Srivastava A.K., Kuridze D., Zaqarashvili T.V., Dwivedi B.N. Intensity oscillations observed with Hinode near the south pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona. Astron. Astrophys. 2008, vol. 481, pp. L95-L98. DOI:https://doi.org/10.1051/0004-6361:20079328.
62. Srivastava A.K., Ballester J. L., Cally P.S., Carlsson M., Goossens M., Jess D.B., Khomenko E., et al. Chromospheric heating by magenohydrodynamic waves and instabilities. JGR Space Phys. 2021, vol. 126, e2020JA029097. DOI: 10.1029/ 2020JA029097.
63. Suematsu Y. Influence of photospheric 5-minute oscillations on the formation of chromospheric fine structures. Progress of Seismology of the Sun and Stars. Lecture Notes in Physics. Berlin, Heidelberg. Springer. 1990, vol. 367, pp. 211-214. DOI:https://doi.org/10.1007/3-540-53091-6_83.
64. Taroyan Y., Erdelyi R. Heating diagnostics with MHD waves. Space Sci. Rev. 2009, vol. 149, pp. 229-254. DOI:https://doi.org/10.1007/s11214-009-9506-9.
65. Teplitskaya R.B., Turova I.P., Kuklin G.V. The study of the dynamic process of umbral flashes. Publ. Debrecen Heliophysical Obs. 1983, vol. 5, pp. 267-284.
66. Teplitskaya R.B., Ozhogina O.A., Turova I.P. Brightness distribution at the base of a coronal hole. Astron. Lett. 2006, vol. 32, no. 2, pp. 120-127. DOI:https://doi.org/10.1134/S106377370602006X.
67. Teplitskaya R.B., Turova I.P., Ozhogina O.A. Intensity oscillations at the feet of coronal holes. Astronomy Lett. 2009, vol. 35, no. 10, pp. 712-722.
68. Turova I.P. On the unusual H emission in a sunspot umbra spectrum. Solar Phys. 1994, vol. 150, pp. 71-79.
69. Turova I.P., Teplitskaya R.B., Kuklin G.V. The study of umbral flashes in the umbrae of two sunspots. Solar Phys. 1983, vol. 87, pp. 7-22. DOI:https://doi.org/10.1007/BF00151155.
70. Turova I.P., Grigoryeva S.A., Ozhogina O.A. Spatial and temporal variations of K CaII line profile shapes in different structures of the solar chromosphere. II. Determination technique and correlation relationships between the K CaII line parameters for K1 and K2 features. Solar-Terrestrial Physics. 2020. Vol. 6. Iss. 4. P. 10-16. DOI:https://doi.org/10.12737/stp-64202002.
71. Vernazza J.E., Avrett E.H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun. Astrophys. J. Suppl. Ser. 1981, vol. 45, pp. 635-725. DOI:https://doi.org/10.1086/190731.
72. von Uexküll M., Kneer F. Oscillations of the Sun's chromospheres. VII. K grains revisited. Astron. Astrophys. 1995, vol. 294, pp. 252-259.
73. Withbroe G.L., Noyes R.W. Mass and energy flow in the solar chromosphere and corona. Ann. Rev. Astron. Astrophys. 1977, vol. 15, pp. 363-387. DOI:https://doi.org/10.1146/annurev.aa.15.090177. 002051.
74. Zaqarashvili T.V., Khodachenko M.L., Rucker H.O. Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 2011, vol. 529, A82. DOI:https://doi.org/10.1051/0004-6361/201016326.
75. Zweibel E. G. Magnetic reconnection in partially ionized gases. Astrophys. J. 1989, vol. 340, pp. 550-557.
76. URL: https://SolarMonitor.org (accessed February 22, 2023).