SPECTRAL ANALYSIS OF IAR OSCILLATIONS TO DETERMINE THE VALUE AND VARIABILITY OF THE PEAK ELECTRON DENSITY NMF2
Аннотация и ключевые слова
Аннотация (русский):
This methodical paper explores the possibility of estimating the peak electron density of the F2-region of the ionosphere (NmF2) under different conditions, using data on the frequency of spectral bands (harmonics) of the ionospheric Alfvén resonator (IAR) oscillation. We describe a simple technique for tracking the frequency of spectral bands during the day by measuring their position on the plot of the IAR daily dynamic spectrum. Through calculations within the framework of the global ionospheric model IRI-2016, we verify the correctness of the comparison of the frequencies of resonant bands, measured at one point, with data from radio sounding, performed at other points remote from IAR frequency measurement sites at a distance. We propose an algorithm for comparing NmF2, measured by a radiosonde, with frequencies of spectral lines by precalculating the evaluation factor. It is formed on the basis of a nonlinear combination of the frequencies of the three observed harmonics. Then the time series of this factor is compared with the results of radio sounding, and correlation and regression coefficients, as well as estimation errors are calculated. Using the material on rare cases of round-the-clock observation of IAR oscillations in the winter months of 2011–2012, we trace the dependence of the average error in determining the peak electron density on local time. We present the data on the most favorable local time intervals for determining NmF2 from IAR harmonic frequencies depending on season. Some additional factors are discussed which affect the accuracy of estimates and determine the frequency range of IAR oscillations.

Ключевые слова:
ionospheric Alfvén resonator, spectral bands, oscillation harmonics, electron density maximum, diurnal variations, regression analysis
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Baru N., Koloskov A., Yampolsky Y., Rakhmatulin R. Multipoint observations of ionospheric Alfvén resonance. Adv. Astron. Space Phys. 2016, vol. 6, no. 1, pp. 45-49. DOI:https://doi.org/10.17721/2227-1481.6.45-49.

2. Beggan C.D. Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques. Ann. Geophys. 2014, vol. 32, pp. 951-958. DOI:https://doi.org/10.5194/angeo-32-951-2014.

3. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Yu. Finding resonance structure spectrum of the atmospheric electromagnetic noise background within short-period geomagnetic pulsation range. Doklady AN SSSR [Reports of AS USSR]. 1987, vol. 297, pp. 840-843. (In Russian).

4. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Y. Theory for the formation of resonance structure in the spectrum of atmospheric electromagnetic background noise in the range of short-period geomagnetic pulsations. Radiophysics and Quantum Electronics. 1989, vol. 32, no. 7, pp. 594-601.

5. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Yu. The ionospheric Alfvén resonator. J Atmos. Terr. Phys. 1990, vol. 52, no. 9, pp. 781-788.

6. Belyaev P.P., Polyakov S.V., Ermakova E.N., Isaev S.V. Experimental studies of the ionospheric Alfvén resonator using observations of the electromagnetic noise background over the solar cycle of 1985 to 1995. Radiophysics and Quantum Electronics. 1997, vol. 40, no. 10, pp. 1305-1319.

7. Belyaev P.P., Bösinger T., Isaev S.V., Kangas J. First evidence at high latitudes for the ionospheric Alfvén resonator. J. Geophys. Res. 1999, vol. 104, pp. 4305-4317. DOI: 10.1029/ 1998JA900062.

8. Bösinger T., Haldoupis C., Belyaev P.P., Yakunin M.N., Semenova N.V., Demekhov A.D., Angelopoulos V. Special properties of the ionospheric Alfvén resonator observed at a low-latitude station (L=1.3). J. Geophys. Res. 2002, vol. 107, A10, pp. 1281-1289. DOI:https://doi.org/10.1029/2001JA005076.

9. Bösinger T., Demekhov A.G., Trakhtengerts V.Y. Fine structure in ionospheric Alfvèn resonator spectra observed at low latitude (L=1.3). Geophys. Res. Lett. 2004, vol. 31, L18802. DOI:https://doi.org/10.1029/2004GL020777.

10. Chaston C.C., Bonnell J.W., Carlson C.W., Berthomier M., Peticolas L.M., Roth I., et al. Electron acceleration in the ionospheric Alfvén resonator. J. Geophys. Res. 2002, vol. 107, no. A11, p. 1413.

11. Demekhov A.G., Belyaev P.P., Isaev S.V., Manninen J., Turunen T., Kangas J. Modeling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc1 frequency range. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 257-265. DOI:https://doi.org/10.1016/S1364-6826(99)00119-4.

12. Dudkin D., Pilipenko V., Korepanov V., Klimov S., Holzworth R. Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite. J. Atmos. Solar-Terr. Phys. 2014, vol. 117, pp. 81-87. DOI:https://doi.org/10.1016/j.jastp.2014.05.013.

13. Ermakova E.N., Kotik D.S., Polyakov S.V. Studying specific features of the resonance structure of the background noise spectrum in the frequency range 1-10 Hz with allowance for the slope of the Earth’s magnetic field. Radiophysics and Quantum Electronics. 2008, vol. 51, no. 7, pp. 575-584.

14. Ermakova E.N., Polyakov S.V., Semenova N.V. Study of the fine structure in the spectrum of low-frequency background noise at mid-latitudes. Physics of Auroral Phenomena. 2011, vol. 34, no. 2, pp. 147-150.

15. Fedorov E.N., Mazur N.G., Pilipenko V.A., Ermakova E.N. Modeling diurnal variations of the IAR parameters. Acta Geod. Geophys. 2016, vol. 51, no. 4, pp. 597-617. DOI: 10.1007 s40328-015-0158-9.

16. Getmanov V.G., Dovbnya B.V., Kornilov A.S. Estimating the frequency and amplitude parameters of the serpentine-emission type of geomagnetic pulsations. Geomagnetism and Aeronomy. 2018, vol. 58, no. 4, pp. 523-532. https://elibrary.ru/item.asp?id=35724607

17. Greifinger C., Greifinger P. Theory of hydromagnetic propagation in the ionospheric waveguide. J. Geophys. Res. 1968, vol. 73, pp. 7473-7490.

18. Guglielmi A.V. MGD volny v okolozemnoi plazme [MHD Waves in Near-Terrestrial Plasma]. Moscow, Nauka Publ., 1979, 139 p. (In Russian).

19. Guglielmi A.V., Potapov A.S. Ob osobennosti polya MGD-volny v neodnorodnoi plasme [Concerning one peculiarity of the MHD-wave field in an inhomogeneous plasma]. Issled. po geomagnetizmu, aeronomii i fizike Solntsa [Research on geomagnetism, aeronomy and solar physics]. 1984, vol. 70, pp. 149-157. (In Russian).

20. Guglielmi A.V., Feygin F.Z. Impact of ponderomotive forces on the Earth’s magnetosphere. Izv., Phys. Solid Earth. 2018, vol. 54, no. 5, pp. 712-720. DOI:https://doi.org/10.1134/S1069351318050075.

21. Guglielmi A., Potapov A., Russell C. The ion cyclotron resonator. JETP Letters. 2000, vol. 72, iss. 6, pp. 432-435.

22. Guglielmi A.V., Klain B.I., Potapov A.S. On the spectrum of ultra-low-frequency oscillations of the ionosphere in the Pc1 range. Geofizicheskie issledovaniya [Geophysical research]. 2023, vol. 24, no. 1, pp. 74-84. DOI:https://doi.org/10.21455/gr2023.1-5. (In Russian).

23. Hasegawa A., Chen L. Theory of magnetic pulsations. Space Sci. Rev. 1974, vol. 16, pp. 347-359.

24. Koloskov A.V., Baru N.A. F-layer critical frequency de-termination from ionospheric Alfven resonance observations. Ukrainskii antarkticheskii zhurnal [Ukranian Antarctic J.]. 2011-2012, no. 10-11, pp. 114-120. (In Russian).

25. Lysak R.L. Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 1991, vol. 96, no. A2, pp. 1553-1568.

26. Lysak R.L. Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes. J. Geophys. Res. 2004, vol. 109, A07201. DOI:https://doi.org/10.1029/2004JA010454.

27. Lysak R.L., Yoshikawa A. Resonant cavities and wave-guides in the ionosphere and atmosphere. Magnetospheric ULF Waves: Synthesis and New Directions. Geophys. Monograph Ser. 2006, vol. 169, pp. 289-306. Washington: American Geophysical Union Publ., DC, USA, 2006.

28. Lysak R.L., Waters C.L., Sciffer M.D. Modeling of the ionospheric Alfvén resonator in dipolar geometry. J. Geophys. Res.: Space Phys. 2013, vol. 118, no. 4, pp. 1514-1528. DOI:https://doi.org/10.1002/jgra.50090.

29. Marangio P., Christodoulou V., Filgueira R., Rogers H.F., Beggan C.D. Automatic detection of ionospheric Alfvén resonances in magnetic spectrograms using U-net. Computers and Geosciences. 2020, vol. 145, article 104598. DOI:https://doi.org/10.1016/j. cageo.2020.104598.

30. Parent A., Mann I.R., Rae I.J. Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator. J. Geophys.: Res. Space Phys. 2010, vol. 115, art. no. A02312. DOI:https://doi.org/10.1029/2009JA014673.

31. Pokhotelov O.A., Pokhotelov D., Streltsov A., Khruschev V., Parrot M. Dispersive ionospheric Alfvén resonator. J. Geophys. Res. 2000, vol. 105, no. A4, pp. 7737-7746. DOI: 10.1029/ 1999JA900480.

32. Pokhotelov O.A., Khruschev V., Parrot S., Senchenkov S., Pavlenko V.P. Ionospheric Alfvén resonator revisited: Feed-back instability. J. Geophys. Res. 2001, vol. 106, no. A11, pp. 25813-258234. DOI:https://doi.org/10.1029/2000JA000450.

33. Pokhotelov O.A., Feygin F.Z., Khabazin Yu, Khruschev V.V., Bösinger T., Kangas J., Prikner K. Observations of IAR spectral resonance at a large triangle of geophysical observatories. Proc. XXVI Annual Seminar “Physics of Auroral Phenomena”. Apatity: Kola, Science Center, RAS. 2003, pp. 123-126.

34. Polyakov S.V. On the properties of ionospheric Alfvén resonator. Simpozium KAPG po solnechno-zemnoi fizike [KAPG Simpozium on Solar-Terrestrial Physics], Book of Abstracts. Moscow, Nauka, 1976, part 3, pp. 72-73. (In Russian).

35. Polyakov S.V., Rapoport V.O. Ionospheric Alfvén resonator. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1981, vol. 21, no. 5, pp. 816-822. (In Russian).

36. Potapov A.S., Polyushkina T.N. Response of IAR frequency scale to solar and magnetic activity in solar cycle 24. AIMS Geosciences. 2020a, vol. 6, iss. 4, pp. 545-560. DOI:https://doi.org/10.3934/geosci.2020031.

37. Potapov A.S., Polyushkina T.N. Estimation of the ionosphere critical frequency without radio sounding. IEEE Trans. Geoscience and Remote Sensing. 2020b, vol. 58, no. 7, pp. 5058-5065. DOI:https://doi.org/10.1109/TGRS.2020.2972011.

38. Potapov A., Polyushkina T., Dovbnya B., Tsegmed B., Rakhmatulin R. Emissions of ionospheric Alfvén resonator and ionospheric conditions. J. Atmos. Solar-Terr. Phys. 2014, vol. 119, pp. 91-101. DOI:https://doi.org/10.1016/j.jastp.2014.07.001.

39. Potapov A.S., Polyushkina T.N., Oinats A.V., Pashinin A.Yu, Raita T., Tsegmed B. The first attempt to estimate the ion content over the ionosphere using data from the IAR frequency structure. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa (Current problems in remote sensing of the Earth from space). 2016, vol. 13, no. 2, pp. 192-202. DOI:https://doi.org/10.21046/2070-7401-2016-13-2-192-202. (In Russian).

40. Potapov A.S., Polyushkina T.N., Tsegmed B. Morphology and diagnostic potential of the ionospheric Alfvén resonator. Solar-Terr. Phys. 2021, vol. 7, iss. 3, pp. 36-52. DOI:https://doi.org/10.12737/stp-73202104.

41. Potapov A.S., Guglielmi A.V., Klain B.I. Discrete spectrum of ULF oscillations of the ionosphere. IEEE Transactions on Geoscience and Remote Sensing. 2022a, vol. 60, art. no. 4600505. DOI:https://doi.org/10.1109/TGRS.2021.3092738.

42. Potapov A.S., Guglielmi A.V., Klain B.I. Ratio between discrete IAR frequencies from observations in the solar cycle 24. IEEE Transactions on Geoscience and Remote Sensing. vol. 60, 2022b, art no. 2004605. DOI:https://doi.org/10.1109/TGRS.2022.3170473.

43. Reinisch B.W., Haines D.M., Bibl K., Galkin I., Huang X., Kitrosser D.F., Sales G.S., Scali J.L. Ionospheric sounding support of over-the-horison radar. Radio Sci. 1997, vol. 32, no. 4, pp. 1681-1694. DOI:https://doi.org/10.1029/97RS00841.

44. Reinisch, B. W., Huang X.-Q., Belehaki A., Shi J.-K., Zhang M.-L. Ilma R., Modeling the IRI topside profile using scale height from ground-based ionosonde measurements. Adv. Space Res. 2004, vol. 34, pp. 2026-2031. DOI:https://doi.org/10.1016/j.asr.2004.06.012.

45. Schumann W.O. On the radiation free self oscillations of a conducting sphere, which is surrounded by an air layer and an ionospheric shell. Z Naturforsch. 1952, vol. 72, pp. 149-155.

46. Semenova N.V., Yahnin A.G., Vasil’ev A.N., Amm O. Specific features of resonance structures in spectra of ULF electromagnetic noise at high latitudes (Barentsburg Observatory). Geomagnetism and Aeronomy. 2008, vol. 48, pp. 36-44. DOI:https://doi.org/10.1007/s11478-008-1005-8.

47. Simões F., Klenzing J., Ivanov S., Pfaff R., Freudenreich H., Bilitza D., et al. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere. J. Geophys. Res.: Space Res. 2012, vol. 117, A11305. DOI:https://doi.org/10.1029/2012JA017709.

48. Southwood D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, vol. 22, pp. 483-491.

49. Stanislawska I., Juchnikowski G., Gulyaeva T. L. Correlation distances based on ionospheric and geomagnetic catalogues. Proc. STP-V Workshop. Hitachi, Japan, 1997, pp. 387-390.

50. Surkov V.V., Pokhotelov O.A., Parrot M., Fedorov E.N., Hayakawa M. Excitation of the ionospheric resonance cavity by neutral winds at middle latitudes. Ann. Geophys. 2004, vol. 22, pp. 2877-2889. DOI:https://doi.org/10.5194/angeo-22-2877-2004.

51. Surkov V.V., Hayakawa M., Schekotov A.Y., Fedorov E.N., Molchanov O.A. Ionospheric Alfvén resonator excitation due to nearby thunderstorms. J. Geophys. Res. 2006, vol. 111, iss. A1, A01303. DOI:https://doi.org/10.1029/2005JA011320.

52. Yahnin A.G., Semenova N.V., Ostapenko A.A., Kangas J., Manninen J., Turunen T. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1-4 Hz at L=5.2. Ann. Geophys. 2003, vol. 21, pp. 779-786. DOI:https://doi.org/10.5194/angeo-21-779-2003.

53. URL: https://data.kmio.istp.ac.ru (date of access 19 April 2023).

54. URL: http://ckp-rf.ru/ckp/3056/ (date of access 19 April 2023).

55. URL: https://rscf.ru/project/22-27-00280/ (date of access 19 April 2023).

Войти или Создать
* Забыли пароль?