Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Иркутск, Иркутская область, Россия
Radio observations of weak events are one of the promising methods for studying energy release and non-thermal processes in the solar corona. The development of instrumental capabilities allows for radio observations of weak transient coronal events, such as quasi-stationary brightenings and weak flares of X-ray class B and below, which were previously inaccessible for analysis. We have measured the spectral parameters of microwave radiation for thirty weak solar flares with X-ray classes ranging from A to C1.5, using observations from the Badary Broadband Microwave Spectropolarimeter (BBMS). The spectra indicate that plasma heating is caused by the appearance of non-thermal electron fluxes, which can be detected by bursts of microwave radiation, predominantly with an amplitude ~5–6 solar flux units (SFU) at 4–5 GHz frequencies. One solar flux unit (SFU) of radio emission is equal to 10–22 W/(m•Hz). The range of low-frequency spectrum growth indices fα varies widely from α=0.3 to 15. The distribution of high-frequency decay indices is similar to the distributions of regular flares. One of the explanations for the appearance of large fα values is the Razin effect, which can influence the shape of the gyrosynchrotron spectrum during the generation of bursts in dense plasma under relatively weak magnetic fields. We have detected two events in which the appearance of non-thermal electrons led to the generation of narrowband bursts at frequencies near the double plasma frequency. SRH test trials have shown the potential for measuring the structure of flare sources with fluxes of the order of 1 SFU, indicating the high diagnostic potential of the radioheliograph for detecting acceleration processes in weak flare events and their localization in active regions.
solar microwave emission, radio bursts, microflares
1. Altyntsev A.T., Meshalkina N.S., Fedotova A.Ya., Myshyakov I.I. Background microwave emission and microflares in young active region 12635. Astrophys. J. 2020a, vol. 905, iss. 2. P. 149. DOI:https://doi.org/10.3847/1538-4357/abc54f.
2. Altyntsev A., Lesovoi S., Globa M., Gubin A., Kochanov A., Grechnev V., Ivanov E., Kobets V., Meshalkina N., et al. Multiwave Siberian Radoheliograph. Solar-Terr. Phys. 2020b, vol. 6, iss. 2, p. 30. DOI:https://doi.org/10.12737/stp-62202003.
3. Altyntsev A., Meshalkina N., Myshyakov I. Coherent microwave emission as an indicator of non-thermal energy release at a coronal X-ray point. Solar-Terr. Phys. 2022, vol. 8, iss. 2, p. 3. DOI:https://doi.org/10.12737/stp-82202201.
4. Altyntsev A.T., Reid H., Meshalkina N.S., Myshyakov I.I., Zhdanov D.A. Temporal and spatial association between microwaves and type III bursts in the upper corona. Astronomy and Astrophysics. 2023, vol. 671, id. A30, p. 7. DOI:https://doi.org/10.1051/0004-6361/202244599.
5. Battaglia M., Sharma R., Luo Y., Chen B., Yu S., Krucker S. Multiple electron ecceleration instances during a series of solar microflares observed simultaneously at X-rays and microwaves. Astrophys. J. 2021, vol. 922, no. 2, p. 134. DOI:https://doi.org/10.3847/1538-4357/ac2aa6.
6. Berghmans D., Auchère F., Long D.M., Soubrié E., Mierla M., Zhukov A.N., Schühle U., Antolin P., Harra L., et al. Extreme-UV quiet Sun brightenings observed by the Solar Orbiter/EUI. Astronomy and Astrophysics. 2021, vol. 656, no. L4. DOI: 10.1051/ 0004-6361/202140380.
7. Bogachev S.A., Ulyanov A.S., Kirichenko A.S. Microflares and nanoflares in the solar corona. Physics - Uspekhi. 2020, vol. 63, iss. 8, p.783. DOI:https://doi.org/10.3367/UFNe.2019.06.038769.
8. Chiuderi Drago F., Alissandrakis C., Hagyard M. Microwave emission above steady and moving sunspots. Solar Phys. 1987, vol. 112, p. 89. DOI:https://doi.org/10.1007/BF00148490.
9. Dulk G.A., Marsh K.A. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 1982, vol. 259, p. 350. DOI:https://doi.org/10.1086/160171.
10. Fleishman G.D., Kuznetsov A.A. Fast gyrosynchrotron codes. Astrophys. J. 2010, vol. 721, iss. 2, p. 1127. DOI:https://doi.org/10.1088/0004-637X/721/2/1127.
11. Gary D.E., Hurford G.E. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution. Astrophys. J. 1990, vol. 361, p. 290. DOI:https://doi.org/10.1086/169194.
12. Gary D.E., Hartl M.D., Shimizu T. Nonthermal radio emission from solar soft X-ray transient brightenings. Astrophys. J. 1997, vol. 477, p. 958. DOI:https://doi.org/10.1086/303748.
13. Ginzburg V.L., Syrovatskii S.I. Cosmic Magnetobremsstrahlung (Synchrotron Radiation). Ann. Rev. Astron. Astrophys. 1965, vol. 3, p. 297. DOI:https://doi.org/10.1146/annurev.aa.03.090165.001501.
14. Gopalswamy N., Zhang J., Kundu M.R., Schmahl E.J., Lemen J.R. Fast time structure during transient microwave brightenings: evidence for nonthermal processes. Astrophys. J. 1997, vol. 491, iss. 2, p. L115. DOI:https://doi.org/10.1086/311063.
15. Krucker S., Hurford G.J., Grimm O. The Spectrometer/Telescope for Imaging X-rays (STIX). Astronomy and Astrophysics. 2020, vol. 642, p. A15. DOI:https://doi.org/10.1051/0004-6361/201937362.
16. Kundu M.R., Schmahl E.J., Grigis P.C., Garaimov V.I., Shibasaki K. Nobeyama radio heliograph observations of RHESSI microflares. Astronomy and Astrophysics. 2006, vol. 451, iss. 2, pp. 691-707.
17. Li Z., Su Y., Veronig A., Kong S., Gan W., Chen W. Detailed thermal and nonthermal processes in an A-class microflare. Astrophys. J. 2022, vol. 930, no. 2, p.147. DOI:https://doi.org/10.3847/1538-4357/ac651c.
18. Lin R.P., Dennis B.R., Hurford G.J. The Reuven Ramaty High-Energy Solar Spectroscopic Imager. Solar Phys. 2002, vol. 210, p. 3. DOI:https://doi.org/10.1023/A:1022428818870.
19. Lysenko A., Altyntsev A., Meshalkina N., Zhdanov D., Fleishman G. Statistics of “cold” early impulsive solar flares in x-ray and microwave domains. Astrophys. J. 2018, vol. 856. DOI:https://doi.org/10.3847/1538-4357/aab271.
20. Meegan C., Lichti G., Bhat P.N., Bissaldi E., Briggs M.S., Connaughton V., Diehl R., Fishman G., Greiner J., Hoover A.S. The Fermi gamma-ray burst monitor. Astrophys. J. 2009, vol. 702, p. 791. DOI:https://doi.org/10.1088/0004-637X/702/1/791.
21. Muratov A.A. 2-24 GHz Solar Spectropolarimeter. Baikal Young Scientists’ International School on Fundamental Physics. XII Young Scientists’ Conference “Interaction Of Fields And Radiation With Matter”. 2011, pp. 21-22. (In Russian).
22. Neupert W.M. Comparison of Solar X-ray line emission with microwave emission during flares. Astrophys. J. 1968, vol. 153, p. L59. DOI:https://doi.org/10.1086/180220.
23. Nindos A., Kundu M.R., White S.M., Gary D.E., Shibasaki K., Dere K.P. Microwave and extreme ultraviolet observations of solar polar regions. Astrophys. J. 1999, vol. 527, iss. 1, pp. 415-425.
24. Nita G.M., Gary D.E., Lee J. Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array. Astrophys. J. 2004, vol. 605, iss. 1, pp. 528-545.
25. Qiu J., Liu Ch., Gary D.E., Nita G.M., Wang H. Hard X-Ray and Microwave Observations of Microflares. Astrophys. J.. 2004, vol. 612, no. 1, p. 530. DOI:https://doi.org/10.1086/422401.
26. Ramaty R. Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 1969, vol. 158, p. 753. DOI:https://doi.org/10.1086/150235.
27. Raulin J.-P., White S.M., Kundu M.R., Silva A.V.R., Shibasaki K. Multiple components in the millimeter emission of a solar flare. Astrophys. J. 1999, vol. 522, iss. 1, pp. 547-558.
28. Schadee A., de Jager C., Svestka Z. Enhanced X-ray emission above 3.5 keV in active regions in the absence of flares. Solar Phys. 1983, vol. 89, p. 287. DOI:https://doi.org/10.1007/BF00217252.
29. Shaik S.B., Gary D.E. Implications of flat optically thick microwave spectra in solar flares for source size and morphology. Astrophys. J. 2021, vol. 919, p. 44. DOI:https://doi.org/10.3847/1538-4357/ac0fdb.
30. Shibasaki K., Chiuderi-Drago F., Melozzi M., Slottje C., Antonucci E. Microwave, ultraviolet, and soft X-ray observations of hale region 16898. Solar Phys. 1983, vol. 89, p. 307. DOI:https://doi.org/10.1007/BF00217253.
31. Stahli M., Gary D.E., Hurford G.J. High-resolution microwave spectra of solar bursts. Solar Phys. 1989, vol. 120, p. 351. DOI:https://doi.org/10.1007/BF00159884.
32. Stoiser S., Veronig A.M., Aurass H., Hanslmeier A. RHESSI microflares: I. X-ray properties and multiwavelength characteristics. Solar Phys. 2007, vol. 246, iss. 2, p. 339.
33. Zaitsev V.V., Kruger A., Hildebrandt J., Kliem B. Plasma radiation of power-law electrons in magnetic loops: Application to solar decimeter-wave continua. Astronomy and Astrophysics. 1997, vol. 328, p. 390.
34. Zaitsev V.V., Stepanov A.V. The plasma radiation of flare kernels. Solar Phys. 1983, vol. 88, p. 297. DOI:https://doi.org/10.1007/BF00 196194.
35. Zhdanov D.A., Zandanov V.G. Broadband microwave spectropolarimeter. Central European Astrophys. Bull. 2011, vol. 35, p. 223.
36. Zhdanov D.A., Zandanov V.G. Observations of microwave fine structures by the Badary broadband microwave spectropolarimeter and the Siberian Solar Radio Telescope. Solar Phys. 2015, vol. 290, iss. 1, p. 287. DOI: 10.1007/ s11207-014-0553-3.
37. Xiao H., Maloney S., Krucker S., Dickson E., Massa P., Lastufka E., et al. The data center for the Spectrometer and Telescope for Imaging X-rays (STIX) onboard Solar Orbiter. 2023, https://arxiv.org/abs/2302.00497.
38. URL: http://ckp-rf.ru/usu/73606/ (accessed August 24, 2023).
39. URL: http://ckp-angara.iszf.irk.ru (accessed August 24, 2023).