СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ ПРОЕКТИРОВАНИЯ ПОЧВОЗАЩИТНЫХ ТЕХНОЛОГИЙ НА СКЛОНОВЫХ АГРОЛАНДШАФТАХ
Аннотация и ключевые слова
Аннотация (русский):
Основная цель исследований – уточнение значений эрозионной стойкости почв. Существующие методы оценки эрозионной стойкости почв предусматривают изучение кинетической и потенциальной энергии водного потока. Уменьшение полной энергии в процессе течения по руслу связано с работой водного потока по разрушению и смыву почвы. Однако при этом не учитывается энергия капиллярных волн, существующих на поверхности воды при ламинарном течении. Их частота обычно такова, что волны не различимы невооруженным глазом и поэтому не учитываются, хотя энергия таких волн по величине сравнима с энергией потока. Необходимость уточнения эрозионной стойкости связана с возможностью оценить и учесть их энергию. Для этого разработана методика учета и оценки вклада энергии капиллярных волн в общую энергию микропотока воды, оказывающего разрушающее и размывающее воздействие на почву склонового агроландшафта. Методика основана на разработанной математической модели, которая позволила получить выражение для определения отношения энергии капиллярных волн, образующихся на поверхности водного потока, к кинетической энергии водного потока Для экспериментального исследования процесса развития капиллярных волн на гладких и шероховатых поверхностях и определения режимных параметров была создана установка в виде лотка прямоугольного сечения с регулируемым углом наклона и интенсивности подачи воды, а также со сменными рабочими поверхностями. Геометрию микропотока и форму его поверхности определяли по результатам видеосъемки и показаниям лазерного дальномера. В исследуемом диапазоне скоростей волны от 0,28 до 0,46 м/с, длины волны – от 2,8 до 9,7 мм, глубины потока – от 0,7 до 3,1 мм численная оценка зависимости энергии капиллярных волн от кинетической энергии водного потока впервые выявила значительный (до 40…60 %) вклад капиллярных волн, образующихся на поверхности микропотоков, к полной энергии водного потока.

Ключевые слова:
эрозионная устойчивость почв, капиллярные волны, склоновые агроландшафты
Текст
Текст (PDF): Читать Скачать

Введение. Склоновые агроландшафты – объекты подверженые повышенной эрозионной опасности [1, 2, 3]. Для защиты и сохранения свойств агроландшафта, касающихся плодородия почвы нужен не только контроль, но и точное прогнозирование процессов эрозии. Необходимо знать, какие величины мониторить, поскольку различные факторы оказывают разное влияние на способность почвы сопротивляться водной эрозии. Поскольку она преимущественно зависит от характеристик системы микропотоков воды, возникающих при таянии снега или выпадении осадков, то, естественно, необходимо выявлять и изучать их гидродинамические свойства. Такой подход позволяет создавать адекватные физические модели водной эрозии [4]. Возникающая на склоне система микро потоков воды непрерывно меняется, но ряд ее параметров остаются крайне стабильными и характеризуют поверхность склона, а также ее отклик на появление размывающих потоков. При определенных условиях микропоток обладает свойствами, разрушающими и транспортирующими почву, что особенно важно на стадии медленной равномерной эрозии [5].

Долгое время наиболее эффективным считался энергетический подход к количественному описанию эрозионной стойкости почв. В частности, для характеристики сопротивления ее поверхности эрозионному разрушению набегающим микропотоком была предложена величина эрозионной стойкости ψ [6], определяемая как энергия, необходимая для разрушения и выноса единицы массы почвы в естественных условиях. Сейчас более эффективным считают использование величины удельной мощности потока, определяемой как энергию необходимую на разрушение и вынос из места естественного залегания единицы массы почвы за единицу времени:

                                 ψ = E (t m)-1,                                          (1)

где E – энергия (Дж), идущая на разрушение и вынос массы почвы m (кг) за время t (с).

Средняя глубина h (или ширина) микропотока связана с тремя характеристиками: расходом воды Q, м3/с, гравитационным компонентом gi (g – ускорение свободного падения, м/с2, i – уклон), м/с2 и эрозионной устойчивостью ψ, Дж/(кг∙с)≡м23. Как эрозионный смыв, так и отложения, приносимые потоком, на подстилающей поверхности, могут быть описаны безразмерной величиной Эр, а также безразмерной величиной l, играющей роль критерия Лохтина [7] в энергетической интерпретации [8]:

 

                                 Эр=h(gi)3 ψ-2                 l=Qg7i7 ψ-5,                        (2)

Эрозионная стойкость ψ, определяемая выражением (1), необходима для изучения связей критериев Эр и l, согласно выражениям (2), практическое использование которых было проиллюстрировано в работе [9].

В последние годы все большее внимание уделяется влиянию на эрозию склоновых почв волнообразования в поверхностном стоке [10, 11]. Развитие технологий делает достаточно доступным обнаружение и фиксацию процесса развития и формирования волн различных типологий и параметров на поверхности жидкости [12, 13]. В качестве доминирующих факторов, влияющих на различные параметры волнения, выделены шероховатость поверхности почвы и наклон склона. Было показано, что взвешенные наносы могут уменьшить влияние ускорения катящихся волн на эрозию почвы, и это следует учитывать в ее моделях. В отношении энергетики процесса образования капиллярных волн на поверхности жидкости результаты исследований в основном касаются энергетического спектра капиллярных волн [14, 15], их пространственного затухания и диссипации [16, 17]. С энергетической точки зрения влияние волнообразования в водном потоке на эрозию склонов не рассматривалось.

Цель исследования – уточнение величины эрозионной стойкости путем оценки вклада энергии капиллярных волн, образующихся на поверхности микропотоков, в общую энергию водного потока, который оказывает разрушающее и размывающее воздействие на поверхность склона.

Для ее достижения решали следующие задачи: получить аналитические зависимости для отношения кинетической энергии водного потока и энергии капиллярных волн, образующихся на поверхности водного потока; экспериментально измерить и численно оценить требуемые параметры капиллярных волн и течения воды; провести численную оценку вклада энергии капиллярных волн в общую энергию водного потока.

Условия, материалы и методы. Среди множества вариантов реального протекания процессов разрушения почвы микропотоком для проведения исследований были выбраны наиболее характерные случаи: длина волны – от 2 до 15 мм, глубина потока – от 1 до 20 мм, скорость волны – от 280 до 460 мм/с. В первом приближении можно ограничиться относительно слабым течением воды в неглубоком (< 2 см) микропотоке (рис. 1) и предположить, что энергия капиллярной волны пропорциональна только ее поверхностной энергии. Это позволяет оценить энергетический вклад капиллярных волн, определив площадь поверхности:

 

            E=sòò dx dy ((1+(dz/dx)2+(dz/dy)2)1/2-1),                     (3)

 

где s – коэффициент поверхностного натяжения.

 

Рассмотрим поток волновой энергии как энергию, переносимую волной через поверхность поперечного сечения микропотока в единицу времени. Тогда объем водного потока, переносящий энергию, можно определить следующим образом:

 

                                      V=Svt                                               (4)

 

где v – скорость волны (м/с), S – величина площади поперечного сечения микропотока (м2) и t – время (с), за которое заданный объем воды протекает через сечение.

Плотность энергии потока I можно определить как отношение энергии потока, которую несет волна к времени t через площадь S перпендикулярную направлению распространения волны и представляет собой векторную величину:

                      I=E(St)-1 =<w>v=r ω2A2v/2                               (5)

где E – энергия капиллярных волн (Дж), определяемая выражением (3), I – средняя объемная плотность энергии волнового движения (Дж/(м2×с)), ρ – плотность жидкости (кг/м3), ω (рад×с-1) и A (м) – циклическая частота и амплитуда волны соответственно.

 

 

Рис. 1 – Развитие капиллярной волны на поверхности микропотока (схема и фотография).

 

Поскольку объем рассматриваемой жидкости мал, будем считать, что объемная плотность энергии постоянна. Поэтому, исходя из выражения (5), для средней энергии капиллярной волны в объеме V, определяемой формулой (4), можно записать:

 

                             E = r ω2A2 S t v / 2                                     (6)

 

Зная плотность потока энергии, можно найти поток энергии через произвольную поверхность. Кинетическая энергия E* движения массы воды m, содержащейся в том же рассматриваемом объеме V микропотока, текущего со средней скоростью vf, может быть представлена в следующем виде:

 

                E* = m (vf)2/2 =  (vf)2 ρ S t v / 2                             (7)

 

Соотношение значений выражений (6) и (7) позволяет оценить, во сколько раз энергия волны отличается от кинетической энергии водного потока:

 

    E/E* = (rω2A2Stv/2) / ((vf)2ρStv/2) = ω2A2(vf)-2.                 (8)

 

Оценка энергетического вклада капиллярных волн с использованием выражения (8) позволяет скорректировать величину эрозионной стойкости почвы, то есть рассчитать энергию, необходимую для разрушения и выноса единицы массы почвы в естественных условиях её положения в единицу времени с учетом процесса волнообразования на поверхности микропотока.

Для экспериментального исследования процесса развития капиллярных волн на гладких и шероховатых поверхностях и определения величин ω, А, h, а также длины волны λ в лабораторных условиях использовали установку в виде лотка прямоугольного сечения (рис. 2) с регулируемым углом наклона, интенсивности подачи воды и сменными рабочими поверхностями. Скорость волны v рассчитывали по выражению [18]:

 

                    v=((g/k+sk/r) tanh kh)1/2,                                (9)

 

где k = 2π/λ – волновой вектор.

 

 а

 

 б

 

Рис. 2 – Экспериментальная установка с «гладкой» (а) и «шероховатой» (б) поверхностями.

 

Процесс волнообразования в экспериментальной ячейке регистрировали с соответствующим масштабированием путем видеосъемки цифровой видеокамерой GoPro HERO9. Геометрию микропотока и форму его поверхности определяли по результатам видеосъемки и показаниям лазерного дальномера.

Результаты и обсуждение. По итогам численного моделирования и видеосъемки процесса формирования и развития капиллярных волн (рис. 3) был выявлен ряд параметров, реализуемых в наших условиях (ω, A, S, v измерения которых реализованы в данном исследовании). Скорость волны для наблюдаемого диапазона параметров l = 2,8…9,7 мм, h = 1,1 мм, 2ph/l = 0,58…6,2 мм, рассчитанная по выражению (9), находилась в пределах от 0,28 до 0,46 м/с, диапазон изменения амплитуды волны – от 0 до 1,1 мм, частота волны – от 22 до 47 Гц, длина волны не превышала 7,4 мм (рис. 4).

 


Рис. 3 – Моделирование поверхностных волн искусственно создаваемой поверхности микропотока.


Рис. 4 – Зависимость скорости v (м/с) капиллярной волны от ее длины λ (м) и глубины h (м).

 

Таблица. Результаты измерений и расчетов

 

Частота, Гц

Амплитуда, мм

Глубина, мм

Скорость микро-потока, мм/с

E/E*

23

0,307

2,119

269,05

0,051

23

0,614

2,119

269,05

0,174

23

1,125

2,119

269,05

0,471

27

0,409

2,119

262,91

0,082

27

0,614

2,119

262,91

0,256

27

0,921

2,119

262,91

0,634

 

В исследованном диапазоне параметров режимов численные оценки энергии капиллярных волн в зависимости от кинетической энергии водного потока Е/Е* по выражению (8) выявили существенный вклад капиллярных волн, формирующихся на поверхности микропотоков, в полную энергии водного потока – до 47…63 % (см. табл.). Таким образом, кинетическая энергия потока без учета вклада энергии капиллярных волн примерно в 1,5 раза меньше.

Выводы. Принимая во внимание выявленную «многокомпонентность» полной энергии водного потока и сделанные поправки, можно пересмотреть граничные значения, позволяющие оценить устойчивость склоновых поверхностей почвы к вымыванию. Переоценке подлежат интервалы, при которых идет образование отложений и деформация русла, наблюдается равновесие системы «русло – микропоток воды», а также наблюдается смыв почвы и деформация русла водным потоком.

Результаты исследования динамики поверхности микропотоков позволили оценить энергию капиллярных волн и долю их вклада в общую энергию водного потока. Для рассмотренных случаев доля энергии достигала 46…62 %.

Расчетные величины, полученные с использованием теоретических зависимостей, свидетельствуют о том, что вклад энергии капиллярных волн в общую энергию потока воды нельзя считать пренебрежимо малым при энергетическом анализе начальной стадии водной эрозии на склонах. То есть ее необходимо обязательно принимать во внимание при проектировании противоэрозионных мероприятий [19, 20]. В зависимости от уклона и особенностей микрорельефа почвы доля вклада энергии капиллярных волн может меняться, причем по мере уменьшения глубины и скорости микроручейка она возрастает.

Список литературы

1. Boardman J., Poesen J., Evans M. Slopes: Soil erosion // Geological Society London Memoirs. 2022. Vol. 58(1). P. 241-255. doihttps://doi.org/10.1144/M58-2021-4

2. Лурье И.К., Лурье М.В. Моделирование 3D-изменений рельефа местности вследствие склоновой эрозии // Геодезия и картография. 2023. Т. 84. № 3. С. 35-42. doi:https://doi.org/10.22389/0016-7126-2023-993-3-35-42

3. Кашутина Е.А., Ясинский С.В., Коронкевич Н.И. Весенний поверхностный склоновый сток на Русской равнине в годы различной водности // Известия Российской академии наук. Серия географическая. 2020. № 1. С. 37-46. doi:https://doi.org/10.31857/S2587556620010100

4. Pan C.Z., Shangguan Z.P. Experimental study on influence of rainfall and slope gradient on overland shallow flow hydraulics // Journal of Basic Science and Engineering. 2009. Vol. 17(6). P. 843-851. doi:https://doi.org/10.3969/j.issn.1005-0930.2009.06.004

5. Physical modelling of hydraulic erosion rates on loess slopes / H. Zheng, X.-A. Li, Y.-H. Deng, et al. // Water. 2022. Vol. 14(9). P. 1344. doi:https://doi.org/10.3390/w14091344

6. Chuchkalov S., Mikhailov B., Lvova M. and Alekseev V. Formation conditions and parameters of mini-landslides on agricultural slope landscapes // EBWFF 2023 - International Scientific Conference EBWFF. 2023. Vol. 420. Part 1. 03014. URL: https://www.e3s-conferences.org/articles/e3sconf/abs/2023/57/e3sconf_ebwff2023_03014/e3sconf_ebwff2023_03014.html (дата обращения: 15.08.2023). doi:https://doi.org/10.1051/e3sconf/202342003014

7. Чалов Р.С., Рулёва С.Н., Михайлова Н.М. Оценка морфодинамической сложности русла большой реки при планировании водохозяйственных мероприятий (на примере Оби) // География и природные ресурсы. 2016. № 1. С. 29-37.

8. Сысуев В.А., Максимов И.И., Алексеев В.В., Максимов В.И. Получение основной гидрофизической характеристики почв на основе трехмерных моделей // Доклады Российской академии сельскохозяйственных наук. 2013. № 5. C. 63-66.

9. Development of a criteria-based approach to agroecological assessment of slope agrolandscapes / V. Alekseev, V. Maksimov, S. Chuchkalov, et al. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 6 (10(96)). P. 28-34. doi:https://doi.org/10.15587/1729-4061.2018.148623

10. Formation and coarsening of roll-waves in shear shallow water flows down an inclined rectangular channel / K.A. Ivanova, S.L. Gavrilyuk, B. Nkonga, et al. // Computers and Fluids. 2017. Vol. 159. P. 189-203. doi:https://doi.org/10.1016/j.compfluid.2017.10.004

11. Response of roll wave to suspended load and hydraulics of overland flow on steep slope / C. Zhao, J. Gao, M. Zhang, et al. // Catena. 2015. Vol. 133. P. 394-402. doi:https://doi.org/10.1016/j.catena.2015.06.010

12. Capillary wave method: an alternative approach to wave excitation and to wave profile reconstruction / A. Shmyrov, A. Mizev, A. Shmyrova, et al. // Physics of Fluids. 2019. Vol. 31(1). P. 012101. doi:https://doi.org/10.1063/1.5060666

13. Slavchov R.I., Peychev B., Said I. A. Characterization of capillary waves: a review and a new optical method. // Physics of Fluids. 2021. Vol. 33(10). P. 101303. URL: https://qmro.qmul.ac.uk/ xmlui/bitstream/123456789/74320/2/Ismail%20Characterization%20of%20capillary%202021%20Accepted.pdf (дата обращения: 15.08.2023). doi:https://doi.org/10.1063/5.0066759

14. Bidirectional energy cascade in surface capillary waves / L.V. Abdurakhimov, A.A. Levchenko, I.A. Remizov, et al. // Physical Review E. 2015. Vol. 91(2). P. 023021. URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.023021 (дата обращения: 15.08.2023). doi:https://doi.org/10.1103/PhysRevE.91.023021

15. Tobisch E., Kartashov A. Energy spectra of ensemble of nonlinear capillary waves on a fluid // Journal of Marine Science and Engineering. 2021. Vol. 9. P. 1422. URL: https://mdpi-res.com/d_attachment/jmse/jmse-09-01422/article_deploy/jmse-09-01422.pdf (дата обращения: 15.08.2023). doi:https://doi.org/10.3390/jmse9121422

16. Deike L., Berhanu E., Falcon E. Energy flux measurement from the dissipated energy in capillary wave turbulence // Physical Review E. 2014. Vol. 89(2). P. 023003. URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.023003 (дата обращения: 15.08.2023). doi:https://doi.org/10.1103/PhysRevE.89.023003

17. Effect of synthetic detergents on soil erosion resistance / S. Chuchkalov, I. Fadeev, V. Alekseev, et al. // KnE Life Sciences. 2020. Vol. 5(1). P. 489-496. doi:https://doi.org/10.18502/kls.v5i1.6113

18. Struff J.W. The Theory of Sound. Cambridge: Cambridge University Press, 2011. Vol. 2. P.318

19. Противоэрозионная мелиорация в Республике Татарстан / М. М. Хисматуллин, А. Р. Валиев, М. М. Хисматуллин [и др.] // Вестник Казанского государственного аграрного университета. - 2022. - Т. 17, № 2(66). - С. 47-54. - DOIhttps://doi.org/10.12737/2073-0462-2022-45-52.

20. Совершенствование методологии оценки последствий эрозии почвы в полевых экспериментах / Ю. П. Сухановский, А. В. Прущик, В. А. Вытовтов [и др.] // Достижения науки и техники АПК. - 2022. - Т. 36, № 8. - С. 44-48. - DOIhttps://doi.org/10.53859/02352451_2022_36_8_44.

Войти или Создать
* Забыли пароль?