STUDYING THE MAIN CHARACTERISTICS OF THE GEMINID METEOR SHOWER FROM BASELINE VIDEO OBSERVATIONS IN 2021
Аннотация и ключевые слова
Аннотация (русский):
The Geminid meteor shower has been studied using data obtained by the method of baseline video observations during the period from December 01, 2021 to December 17, 2021. The meteors were examined in the brightness range from –3m to 2m and with an angular track length of at least 2°; the sample size was 327 events. The behavior of the shower is considered in terms of the interacting DRG (December ρ-Geminids) and GEM (Geminids) branches, which are closely related to each other and share a common origin. The shower activity was ZHR=127, Flux=19 at the general maximum of DRG+GEM (λsol~261.8°) and ZHR=32, Flux=4 at the putative local maximum of DRG (λsol~258.8°). Daily drift values were obtained for GEM (Δα=0.84°, Δδ=–0.27°, Δλec=0.75°, Δβ=–1.17°) and DRG (Δα=1.29°, Δδ=0.09°, Δλec=1.09°, Δβ=0.23°) in the equatorial and ecliptic coordinate systems; the intrinsic drift in the λec–λsol system was 0.09° and –0.26° for the DRG and GEM components respectively. We have found the opposite nature of the drift of both branches with a tendency for them to intersect at the point α=112.1°, δ=32.5°, λsol=259.8°. We have determined the kinematic and orbital parameters of meteoroids and have identified differences between the most probable geocentric velocities for the DRG (vg=35 km/s) and GEM (vg=34 km/s) branches. The morphology of the distribution of orbits within the plume has been studied. We give recommendations for reliably determining whether the meteors belong to one or another branch.

Ключевые слова:
meteor, meteoroid, meteor shower, Geminids, baseline observations, orbital parameters
Список литературы

1. Brown P. On the cause and nature of error in zenithal hourly rates. WGN, Journal of the IMO. 1990, vol. 18, pp. 141–145.

2. Hanuš J., Delbo M., Vokrouhlický D., Pravec P., Emery J.P., Alí-Lagoa V., Bolin B., Devogèle M., et al. Near-Earth asteroid (3200) Phaethon: Characterization of its orbit, spin state, and thermophysical parameters. Astron. Astrophys. 2016, vol. 592, no. A34. DOI:https://doi.org/10.1051/0004-6361/201628666.

3. Ivanov K.I., Komarova E.S. SkyLine project – a new stage in the development of meteor astronomy in Pribaikalye. Izbrannye problemy astronomii [Selected problems of astronomy: Proc. IV All-Russian Astronomical Conference “Sky and Earth”, dedicated to the 85th anniversary of the astronomical observatory of ISU]. 2016a, pp. 76–83. (In Russian).

4. Ivanov K.I., Komarova E.S. SkyLine is a universal project of meteors video surveillance. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya “Nauki o Zemle” [The Bulletin of Irkutsk State University. Series “Earth Sciences”]. 2016b, vol. 16, pp. 55–66. (In Russian).

5. Ivanov K.I., Komarova E.S., Yazev S.A. A comprehensive study of the Perseid stream bolide using the data of the SkyLine baseline video monitoring system. Astronomy Reports. 2022, vol. 66, iss. 6, pp. 513–520. DOI: 10.1134/ S1063772922070034.

6. Jenniskens P., Nénon Q., Albers J., Gural P.S., Haberman B., Holman D., Morales R., Grigsby B.J., Samuels D., Johannink C. The established meteor showers as observed by CAMS. Icarus. 2016, vol. 266, pp. 331–354. DOI:https://doi.org/10.1016/j.icarus.2015.09.013.

7. Jewitt D. The active asteroids. Astron. J. 2012, vol. 143, no. 3, pp. 66–80. DOI:https://doi.org/10.2458/azu_uapress_ 9780816532131-ch012.

8. Jopek T.J., Valsecchi G.B., Froeschle Cl. Meteoroid stream identification: a new approach – II. Application to 865 photographic meteor orbits. Mont. Not. Roy. Astron. Soc. 1999, vol. 304, pp. 751–758. DOI:https://doi.org/10.1046/j.1365-8711.1999.02265.x.

9. Jopek T.J., Valsecchi G.B. Froeschlé Cl. Meteor stream identification: a new approach – III. The limitations of statistic. Mont. Not. Roy. Astron. Soc. 2003. Vol. 344. P. 665–672. DOI:https://doi.org/10.1046/j.1365-8711.2003.06888.x.

10. Koschack R., Rendtel J. Determination of spatial number density and mass index from visual meteor observations (I). WGN, J. IMO. 1990a, vol. 18-2, pp. 44–58.

11. Koschack R., Rendtel J. Determination of spatial number density and mass index from visual meteor observations (I). WGN, J. IMO. 1990b, vol. 18-4, pp. 119–140.

12. Koseki M. Major meteor showers based on Global Meteor Network data. eMetN Meteor J. 2023, vol. 8, no. 4, pp. 231–245.

13. Licandro J. Campins H., Mothé-Diniz T., Pinilla-Alonso N., de León J. The nature of comet-asteroid transition object (3200) Phaethon. Astron. Astrophys. 2007, vol. 461, no. 2, pp. 751–757. DOI:https://doi.org/10.1051/0004-6361:20065833.

14. Molau S., Barentsen G., Crivello S. Obtaining population indices from video observations of meteors. Proc. of the IMC. 2014, pp. 74–80.

15. Neslušan L., Hajduková M. Separation and confirmation of showers. Astron. Astrophys. 2017, vol. 598. DOI:https://doi.org/10.1051/0004-6361/201629659.

16. Ohtsuka K., Sekiguchi T., Kinoshita D., Watanabe J.-I., Ito T., Arakida H., Kasuga T. Apollo asteroid 2005 UD: split nucleus of (3200) Phaethon? Astron. Astrophys. 2006, vol. 450, pp. L25–L28. DOI:https://doi.org/10.1051/0004-6361:200600022.

17. Ryabova G.O. On the possible ejection of meteoroids from asteroid (3200) Phaethon in 2009. Mont. Not. Roy. Astron. Soc. 2012, vol. 423, iss. 3, pp. 2254–2259. DOI:https://doi.org/10.1111/j.1365-2966.2012.21033.x.

18. Ryabova G.O. A preliminary numerical model of the Geminid meteoroid stream. Mont. Not. Roy. Astron. Soc. 2016, vol. 456, iss. 1, pp. 78–84. DOI:https://doi.org/10.1093/mnras/stv2626.

19. Ryabova G.O. Could the Geminid meteoroid stream be the result of long-term thermal fracture? Mont. Not. Roy. Astron. Soc. 2018, vol. 479, iss. 1, pp. 1017–1020. DOI:https://doi.org/10.1093/mnras/sty1532.

20. Ryabova G.O. The Geminid meteor shower radiant: a mathematical model. Mont. Not. Roy. Astron. Soc. 2021, vol. 507, iss. 1, pp. 4481–4486. DOI:https://doi.org/10.1093/mnras/stab2286.

21. Vereš P., Toth J. Analysis of the SonotaCo video meteoroid orbits. WGN, Journal of the IMO. 2010, vol. 38, no. 2, pp. 54–57.

22. Vida D., Blaauw E., Brown P., Kambulow J., Campbell-Brown M., Mazur M.J. Computing optical meteor flux using Global Meteor Network data. Mont. Not. Roy. Astron. Soc. 2022, vol. 515, iss. 2, pp. 2322–2339. DOI:https://doi.org/10.1093/mnras/stac1766.

23. Williams I.P., Ryabova G.O. Meteor shower features: are they governed by the initial formation process or by subsequent gravitational perturbations? Mont. Not. Roy. Astron. Soc. 2011, vol. 415, iss. 4, pp. 3914–3920. DOI:https://doi.org/10.1111/j.1365-2966.2011.19010.x.

24. URL: http://tdc-www.harvard.edu/catalogs/sky2k.html (accessed September 2, 2024).

25. URL: https://ru.iszf.irk.ru/Generic page (accessed September 2, 2024).

26. URL: https://sonotaco.com/soft/e_index.html#ufoa (accessed September 2, 2024).

27. URL: https://www.ta3.sk/IAUC22DB/MDC2022/Etc/streamfulldata2022.txt (accessed September 2, 2024).

28. URL: https://www.imo.net/members/imo_live_shower?shower=GEM&year=2021 (accessed September 2, 2024).

Войти или Создать
* Забыли пароль?