МЕХАНИЗМ ВЛИЯНИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ПРОЦЕСС МОДИФИЦИРОВАНИЯ СЕРОГО ЧУГУНА
Аннотация и ключевые слова
Аннотация (русский):
Представлена схема экспериментальной установки для измерения электрического сопротивления расплава серого чугуна, в которой использован измерительный прибор на основе двойного мостового устройства Томпсона. Показано, что величина удельного электрического сопротивления серого чугуна изменяется в зависимости от марки применяемого модификатора. Приведены опытные данные по отличию величин удельного электрического сопротивления для различных модификаторов серого чугуна. Также даны изменения значений электросопротивления под влиянием обработки электрическим полем расплава модифицированного чугуна. Сопоставление величин прочности серого чугуна с его значениями удельного электрического сопротивления расплава чугуна после воздействия электрического поля показали их одновременное изменение. Показано падение значений удельного электросопротивления жидкого чугуна от воздействия электрического поля, и оно соответствует приращению прочности модифицированного серого чугуна. Эффективность воздействие электрического поля на процесс модифицирования чугуна определяется термической ионизацией химических элементов входящих в состав модификатора. Показано максимальное увеличение этих параметров после обработки электрическим полем при использовании модификатора ФС75. Описан механизм влияния электрического поля на процесс кристаллизации чугуна для процесса модифицирования ФС75, содержащего в своём составе 75 % кремния. Приведена зависимость эффективности обработки электрическим полем от состава модификатора для серого чугуна. Описана физическая модель воздействия электрического поля на процесс модифицирования серого чугуна. Указана возможность посредством обработки электрическим полем влиять на гидродинамическую обстановку в расплаве серого чугуна и изменять скорость растворения частиц модификаторов

Ключевые слова:
модифицирование серого чугуна, процесс кристаллизации, удельное электрическое сопротивление, обработка электрическим полем, прочность серого чугуна, механизм влияния электрического поля
Текст
Текст произведения (PDF): Читать Скачать

Одним из перспективных способов повышения механических свойств литейных сплавов является воздействие электрического поля на металлический расплав [1 – 3]. Также своё применение этот способ нашёл при модифицировании сплавов [4, 5]. Однако для оптимизации использования этого метода в литейном производстве следует, основываясь на физической модели, определить механизм влияния электрического поля с учётом специфики протекания данного способа воздействия на расплав в условиях процесса модифицирования серого чугуна.

Для определения особенностей процесса воздействия электрического поля на процесс модифицирования серого чугуна была использована экспериментальная установка, схема которой приведена на рис. 1.

В состав данной установки входят:
1 – огнеупорная емкость объемом 50 кг;
2 – печь сопротивления для подогрева расплава серого чугуна; 3 – измерительные электродов измерительной схемы (ИС) соединённых с двойной мостовой схемой Томпсона [6];

4 – электроды подачи постоянного напряжения со звукового генератора ЗГ-17 (ИПН) и напряжения поля обработки расплава (ИН); 
5 – устройство подъема и погружения измерительной ячейки в расплав серого чугуна;
М – приспособление ввода модификатора в
 расплав чугуна.

В электрической схеме предусмотрено автоматическое отключение источника напряжения (ИН) при работе звукового генератора (ИПН), что исключает одновременное подключение к расплаву чугуна ИН и ИПН через электроды 4 (см. рис. 1). Температура ввода модификатора, которая составляла 1380 ℃, измерялась термопарой ВР-5/10.

Результаты определения величин удельного электросопротивления R расплава модифицированного серого чугуна показали их существенные изменения. Так после
процесса модифицирования чугуна ФС75 (рис. 2, поз. 1) и сразу после обработки электрическим полем в процессе модифицирования (рис. 2, поз. 2) показали, в среднем, разность в 52 мкОм×см
.

Различия средних величин R для процесса модифицирования Селикомишметаллом -СММ (рис. 2, поз. 3 и поз. 4) составили 37 мкОм·см и при модифицировании СК25
(рис. 2, поз. 5 и поз. 6) 41 мкОм×см. Можно предположить, что наименьшую величину
R расплав обработанного, модифицированного ФС75 серого чугуна (см. рис. 2) имеет за счёт увеличения количества токоносителей (электронов и ионов) после растворения частиц модификатора и образованием большого числа центров кристаллизации в расплаве чугуна. 

Опытные данные по определению прочностных свойств модифицированного серого чугуна марки ФС75 (75 % Si; 1 % Ca; 2 % Al), СММ (55 % Si; 3 % Ca; 5 % Al) и СК25
(
45 % Si; 30 % Ca; 1 % Al)  с вводом модификатора 0,5 % от массы сплава [7] показали, что для всех процессов модифицирования (рис. 3) происходит существенное увеличение прочностных свойств серого чугуна. На рис. 3 нечётными цифрами обозначены результаты воздействия электрического поля на процессы модифицирования чугуна ФС75, СММ и СК25. Над столбцами диаграммы с чётными цифрами приведены данные для этих процессов модифицирования серого чугуна без обработки электрическим полем. Металлографические исследования выявили изменение количества включений графита в структуре серого чугуна под влиянием электрического поля, так на рис. 4 представлена структура чугуна после модифицирования после ФС75. 

На рис. 5 показана структура чугуна после модифицирования ФС75 с обработкой электрическим полем. Из сопоставления данных структур следует, что воздействие электрического поля существенно влияет на количество включений графита и делает структуру обработанного модифицированного более упрочнённой прочной по сравнению с исходным модифицированным чугуном. Рост прочностных свойств обработанного сплава вызван позитивными изменениями в структуре чугуна за счёт более дисперсных графитовых включений, которые в меньшей степени подрезают металлическую основу сплава. Это объясняется тем, что при вводе частиц модификатора (ФС75 с 75 % Si) в металлический расплав происходит их растворение с нарушением ковалентных связей в Si и возникает увеличение количества свободных токоносителей [8, 9]. Наложение на расплав электрического поля приводит к ускорению движения этих токоносителей, которые предают свою кинетическую энергию центрам кристаллизации сплава увеличивая их энергию и тем самым снижают критический размер зародышей кристаллов
[10, 11]. Такие условия роста кристаллов вызывают увеличение количества кристаллов графита в единице объёма обработанного серого чугуна, что упрочняет его структуру и повышает прочностные свойства.

            Наибольшее повышение прочностных свойств и приращение величины электросопротивления расплава чугуна наблюдается после обработки электрическим полем при использовании ФС75 (см. рис. 2 и рис. 3). Можно предположить некоторое снижение прочностных свойств чугуна при вводе СК25 и СММ, по сравнению с ФС75, происходит за счёт меньшей степени термической ионизации химических элементов, входящих в состав этих модификаторов [8, 12]. Это уменьшает количество свободных токоносителей в расплаве и снижает эффективность воздействия электрического поля на процесс кристаллизации серого чугуна.

Также в межэлектродном пространстве под влиянием электрического поля возникают термоэлектрические явления и выделяется джоулево тепло, которое повышает интенсивность конвективных потоков в металлическом расплаве и изменяет гидродинамическую обстановку [13, 14]. Это позитивно влияет на скорость растворения частиц модификаторов в жидком чугуне и повышает степень усвоения модификатора металлическим расплавом, что воздействует на рост эффективности влияния модификатора на структуру сплава [15, 16].

 

Заключение

 

Таким образом, опытные данные по определению удельного электросопротивления жидкого чугуна выявили зависимость их величин от химсостава используемых модификаторов и влияние на них электрофизического воздействия. Результаты по измерению прочности модифицированного серого чугуна показали позитивное влияния обработки расплава чугуна электрическим полем. Падение значений удельного электросопротивления после воздействия электрическим полем на жидкий чугун соответствую приращению прочности модифицированного серого чугуна. Воздействие электрического поля на процесс модифицирования чугуна определяется термической ионизацией химических элементов входящих в состав модификатора. Обработка электрическим полем влияет на гидродинамическую обстановку в расплаве серого чугуна изменяющую скорость растворения частиц модификаторов.

 

 

Список литературы

1. Вертман А.А., Самарин А.М. Свойства расплавов железа. М.: «Наука», 1969. 280 с.

2. Чернышов И.А. Электромагнитное воздействие на металлические расплавы. М.: Металлургиздат, 1963. 246 с.

3. Верте Л.А. Электромагнитная разливка и обработка жидкого металла. Л., Металлургия, 1967. 206 с.

4. Миненко Г.Н. Воздействие физических полей на процессы внепечной обработки литейных сплавов. Учебное пособие. М.: Издательство «Спутник +», 2012. 64 с.

5. Миненко Г.Н. О воздействии обработки электротоком на процесс модифицирования Fe-Cсплавов // Литейное производство. 2011. № 5. С. 6–8.

6. Филиппов С.И., Арсентьев П.П., Яковлев В.В., Крашенинников М.Г. Физико-химические методы исследования металлургических процессов М.: Металлургия, 1968, 551 с.

7. Справочник по чугунному литью / Под ред. Н.Г. Гиршовича. Изд. 3-е. Л.: Машиностроение, 1978. 758 с.

8. Белащенко Д.К. Явления переноса в жидких металлах и полупроводниках. М.: Атомиздат, 1970. 252 с.

9. Регель А.Р., Глазов В.М. Физические свойства электронных расплавов. М. «Наука», 1980. 296 с.

10. Куманин И.Б. Вопросы теории литейных процессов. Формирование отливок в процессе затвердевания и охлаждения сплава. М., Машиностроение, 1976. 216 с.

11. Ершов Г.С., Черняков В.А. Строение и свойства жидких и твёрдых металлов. М.: Металлургия. 1978. 248 с.

12. Жуховицкий А.А., Белащенко Д.К., Бокштейн Б.С., Григорян В.А., Григорьев Г.А., Гугля В.Г. Физико-химические основы металлургических процессов. М.: Металлургия, 1973. 392 с.

13. Гельфгат Г.М., Лиелаусис О.А., Щербинин Э.В. Жидкий металл под воздействием электромагнитных сил. Рига: «Зинанте», 1976. 248 с.

14. Кирко И.М. Жидкий металл в электромагнитном поле. М.: Энергия, 1964. 237 с.

15. Жуховицкий А.А., Шварцман Л.А. Краткий курс физической химии. М.: Металлургия, 1979. 368 с.

16. Миненко Г.Н., Головоких А.С. Особенности процесса воздействия электрического тока на металлический расплав // Литейщик России. 2011. № 7. С. 29–30.

Рецензии
1. Механизм влияния электрического поля на процесс модифицирования серого чугуна Авторы: Маликов Андрей Андреевич

Войти или Создать
* Забыли пароль?