г. Москва и Московская область, Россия
Калуга, Калужская область, Россия
Статистические параметры отказов сборочного оборудования различных предприятий автомобилестроительной отрасли, работающих в схожих условиях, не отличаются между собой, что говорит о необходимости анализа и поиска общих решений поставленных проблем. При планировании периодичности калибровки нового сборочного оборудования можно использовать статистику отказов уже существующих производств, в частности для калибровки момента затяжки в периодической проверке. Изложенные в статье материалы предполагают формализацию технологической подготовки производства в части обеспечения непрерывной сборки. В работе получено формальное описание для расчета расписания калибровки сборочного инструмента, расчетное время выхода момента затяжки за поле допуска, время для периодической калибровки инструмента и зависимости для оценки периодичности проверок. Представленные результаты могут быть использованы для построения АСТПП сборочных предприятий автомобильной промышленности, на их основе разработаны программно-технические решения.
сборочное оборудование, математическая модель, управляющий алгоритм, автомобилестроительный кластер, период обслуживания инструмента
Введение
В настоящее время многие сборочные предприятия страны в области как общего машиностроения, так и автомобилестроения в частности, проводят внутренний аудит сборочного оборудования для поиска способов оптимизации себестоимости через снижение времени простоя при настройке сборочного оборудования. Ряд технических задач не имеют традиционного решения, требуется их научное осмысление и формализация расчетов для снижения отказов оборудования.
Постановка задачи
Практика показывает, что статистические параметры отказов оборудования различных предприятий автомобилестроительной отрасли, работающих в схожих условиях, не отличаются между собой [1, 2]. Поэтому, при планировании периодичности калибровки нового сборочного оборудования целесообразно проанализировать статистику отказов уже существующих производств. Одним из элементов настройки оборудования является калибровка момента затяжки в периодической проверке. Время между двумя калибровками момента затяжки (периодичность калибровки) – ТПi для i-х моделей инструментов целесообразно выбирать с использованием данных уже функционирующих производств, в которых используются i-е модели инструментов. Производственная статистика показывает, что скорость разрегулирования инструментов в период приработки и в период нормального функционирования практически не изменяется. Таким образом, нет необходимости изменять период ТПi в ходе эксплуатации. Данная величина может сохраняться на протяжении всего времени нормального функционирования сборочного инструмента. В рамках данной статьи рассматриваются вопросы расчетных методик временных периодов между калибровками инструмента и оценки периодичности проверок.
Материалы и методы решения задачи
Используем скорость разрегулирования как определяющий параметр при выборе метода определения периодичности проверок. Скорость разрегулирования между двумя последовательными калибровками инструмента может быть описана следующей формулой:
где
Производственная статистика показывает, что для того, чтобы получить значение
Среднее значение скорости разрегулирования
Система уравнений при этом имеет следующий вид:
После преобразования получаем:
Значение момента затяжки j-го сборочного инструмента измеренное при z-й калибровке:
где
В выражении (5)
получим значение
Расписание проверок должно обеспечивать выполнение калибровки оборудования до достижения им значений
Время выхода за поле допуска момента затяжки j-го сборочного инструмента
Промежуток времени между двумя калибровками момента затяжки сборочного инструмента, т.е. периодичность контроля момента затяжки, должен удовлетворять следующим условиям:
где
В реальном производстве разрегулирование многих типов и моделей сборочных инструментов может быть практически равным нулю [3]. В этом случае для определения оптимального периода проверок следует применять вероятностный подход, использующий характеристики надежности инструмента. Предлагается в качестве такой характеристики использовать время наработки на отказ
Постановку задачи для ее поэтапного решения поясняет рис. 1.
Рис. 1. Изменение вероятности безотказной работы сборочного инструмента во времени в циклах контроля и восстановления
Fig. 1. Change in the probability of failure-free operation of an assembly tool over time in control and recovery cycles
Здесь участок А соответствует классической задаче Барлоу-Хантера-Прошана, в которой для экспоненциального распределения вероятности безотказной работы оборудования характеризующейся известной интенсивностью отказов l и известной длительностью среднего времени проверки
Участок Б поясняет постановку задачи более точно моделирующей функционирование совокупности сборочного оборудования для случая
Поскольку коэффициент готовности соответствует вероятности нахождения оборудования в исправном состоянии, задача оптимизации периода проверок сводится к нахождению
Для модели Барлоу-Хантера-Прошана оптимальной периодичностью проверок, при известной интенсивности отказов сборочного оборудования l и длительности проверок
Для его решения осуществляется переход к относительным значениям оптимального периода проверок:
Коэффициент периодичности
Используем разложение экспоненциальной функции в степенной ряд и запишем уравнение (10) в виде (11), где
В практически значимых случаях
Для случая Б, когда затраты времени на восстановление значительно превышают длительность проверки, можно применить итерационный алгоритм, заменяя на очередном
где
Полагая
Данный подход в достаточной степени учитывает экономические факторы и позволяет получить, с необходимой для производства точностью, оптимальную периодичность проверки оборудования [6]. Используя зависимость для расчета снижения коэффициента готовности, отражающего в нашем случае средние производственные потери, получим удобное для качественного анализа оценочное выражение для расчета коэффициента периодичности проверок
при
Заключение
Проведенные исследования предполагают формализацию технологической подготовки производства в части обеспечения непрерывной сборки. В работе получено формальное описание для расчета расписания калибровки сборочного инструмента, расчетного времени выхода момента затяжки за поле допуска, время для периодической калибровки инструмента и зависимости для оценки периодичности проверок.
Представленные результаты могут быть использованы для построения АСТПП сборочных предприятий автомобильной промышленности, на их основе разработаны программно-технические решения.
1. Шабанов А.А. Решение задачи оптимизации частоты проверок параметров оборудования // Вопросы радиоэлектроники / Серия общетехническая (ОТ). – 2015. – № 6. – С. 105-114.
2. Шабанов А.А. Разработка методики рационального выбора структуры и состава запаса сборочных инструментов и приспособлений для системы обеспечения механической сборки // Вопросы радиоэлектроники / Серия общетехническая (ОТ). – 2015. – №6. – С. 115-124.
3. Шабанов А.А., Аверченкова Е.Э. Методика формирования оптимальной совокупности запасного оборудования в организационно-технологической системе обеспечения механической сборки на предприятиях автомобилестроительного кластера // Известия Юго-Западного государственного университета. – 2021. – №25 (4). – С. 201-219.
4. Шабанов А.А., Аверченкова Е.Э. Модель и методика формирования оптимальной совокупности оборудования контроля и поверки предприятий автомобилестроительного кластера // Известия Юго-Западного государственного университета. – 2022. – №26 (1). – С. 73-91.
5. Шабанов А.А., Аверченкова Е.Э. Моделирование систем управления организационно-технологическим обеспечением механической сборки на предприятиях автомобилестроительного кластера // Автоматизация и моделирование в проектировании и управлении. – 2021. – №. 3-4. – С. 58-67.
6. Шабанов А.А., Аверченкова Е.Э., Аверченков В.И. Модель и алгоритм управления совокупностью сборочного оборудования системы обеспечения механической сборки // Автоматизация и моделирование в проектировании и управлении. – 2022. – №1. – С. 43-55.
7. Черкесов Г.Н. О расчете надежности обслуживаемых систем при ограниченном ЗИП с периодическим пополнением запасов. – М.: Надежность, № 2(5). – 2003.
8. Чуркин В.В. Оценка и оптимизация комплекта ЗИП с помощью метода статистического моделирования // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Информатика. Телекоммуникации. Управление. – 2015. – № 2-3 (217-222). – С. 79-92.
9. Чечуга А.О. Особенности разработки технологических процессов автоматизированной и роботизированной сборки // Известия Тульского государственного университета. Технические науки. – 2019. – № 9. – С. 555-559.
10. Control System of Assembly Production Organizational and Technological System of Automotive Cluster Factories A.A. Shabanov and E.E. Averchenkova Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 2091, 5th International Scientific Conference on Information, Control, and Communication Technologies (ICCT-2021) 4-7 October 2021, Astrakhan, Russian Federation Citation A A Shabanov and E E Averchenkova 2021 J. Phys.: Conf. Ser. 2091 012057.