ANALYSIS OF HELIO- AND GEOPHYSICAL EVENTS IN OCTOBER–NOVEMBER 2021 FROM COMPREHENSIVE OBSERVATIONS OF SHICRA SB RAS
Аннотация и ключевые слова
Аннотация (русский):
The paper reports the results of comprehensive observations of space weather manifestations during geophysical events at the end of October – beginning of November 2021 at the Yakut meridional geophysical network of SHICRA SB RAS equipped with a complex of various scientific instruments installed at the stations Yakutsk, Maimaga, Zhigansk, and Tixie Bay (neutron monitors, an ionosonde, a riometer, receivers of VLF radio noise and signals from navigation radio stations, magnetometers), as well as a complex of optical instruments installed in Maimaga. We present the results of the analysis of phenomena occurring in near-Earth space, Earth’s ionosphere and atmosphere in the North-Eastern sector of Siberia. We examine the properties of the geophysical effects of space weather observed at this time: Forbush decreases of cosmic rays, geomagnetic storm and substorm, riometric absorption, the occurrence of electrojet, quasi-periodic broadband radio hisses, assess changes in the effective height of the Earth—ionosphere waveguide, F2-layer critical frequencies, absorption of short-wave radio waves, temperature of the neutral atmosphere, radiant auroral band in 557.7 and 630.0 nm emissions, as well as the region of intense auroras and auroral red arc (SAR arc).

Ключевые слова:
solar flare, magnetic storm, Forbush decrease, aurora, auroral arc, neutron monitor, ionosonde, riometer, receiver of VLF radio noise and signals from navigation radio stations, magnetometers
Список литературы

1. Baishev D.G., Samsonov S.N., Moiseev A.V., Boroyev R.N., Stepanov A.E., Kozlov V.I., Korsakov A.A., Toropov A.A., Yoshikawa A., Yumoto K. Monitoring and investigating space weather effects with meridional chain of instruments in Yakutia: a brief overview. Solar-Terr. Phys. 2017, vol. 3, iss. 2, pp. 25–33. DOI:https://doi.org/10.12737/stp-3220175.

2. Grigoryev V.G., Starodubtsev S.A., Krivoshapkin P.A., Prikhodko A.N., Yegorov A.G. Cosmic ray anisotropy based on Yakutsk station in real time. Adv. Space Res. 2008, vol. 41, iss. 6, pp. 943–946. DOI:https://doi.org/10.1016/j.asr.2007.04.072.

3. Howard T. Coronal Mass Ejections: An Introduction, Astrophysics and Space Science Library. Springer Science+Business Media, LLC. 2011, vol. 376. DOI:https://doi.org/10.1007/978-1-4419-8789-1.

4. Ievenko I.B., Parnikov S.G. Relationship of the SAR arc dynamics to substorm injection based on the aurorae observation. Magnetospheric phenomena in the plasmapause vicinity. Geomagnetism and Aeronomy. 2022, vol. 62, no. 1-2, pp. 32–49. DOI:https://doi.org/10.1134/S0016793222020098.

5. Kozlov V.I., Baishev D.G., Pavlov E.A. Variations of Natural Electrical Potentials in the Cryolithozone, Yakutsk. Izvestiya, Physics of the Solid Earth. 2022, vol. 58, no. 3, pp. 435–442.

6. Krymsky G.F. Diffusional mechanism of the daily variation of cosmic rays. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1964, vol. 4, pp. 977–986. (In Russian).

7. Krymsky G.F., Krivoshapkin P.A., Grigoryev V.G., Skripin G.V., Chuprova V.P. Dynamics of the cosmic ray current behaviour during large-scale solar wind disturbances. Proc. 28th ICRC. Tsukuba, Japan, 2003, SH 2.2, pp. 3613–3616.

8. Kumar A., Kumar S. Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24. Earth, Planets and Space. 2018, vol. 70, no. 29, pp. 1–14. DOI:https://doi.org/10.1186/s40623-018-0794-8.

9. Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Solar-Terr. Phys. 2021, vol. 7, iss. 4, pp. 24–32. DOI:https://doi.org/10.12737/stp-74202104.

10. Loewe C.A., Prolss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209–14213.

11. Manninen J., Kleimenova N.G., Gromova L.I., Fedorenko Y.V., Nikitenko A.S., Lebed’ O.M. Daytime VLF emissions during the magnetic storm recovery phase: the event of January 5, 2015. Geomagnetism and Aeronomy. 2020, vol. 60, no. 3, pp. 301–310. DOI:https://doi.org/10.1134/S0016793220030111.

12. Mitra A.P. Ionospheric Effects of Solar Flares. Dordrecht, Holland, D. Reidel Publ. Co., 1974, 307 p. (Russ. ed.: Mitra A.P. Vozdeistvie solnechnykh vspyshek na ionosferu Zemli. Moscow, Mir Publ., 1977, 370 p.).

13. Murzaeva N.N., Mullayarov V.A., Kozlov V.I., Karimov R.R. Morphological characteristics of the midlatitude regular noise background of the natural low-frequency emission. Geomagnetism and Aeronomy. 2001, vol. 41, no. 1, pp. 76–83.

14. Orlov A.B., Pronin A.E., Uvarov A.N. Latitudinal dependence of the effective electron-loss coefficient in the daytime lower ionosphere as deduced from VLF phase variations and riometric absorption data during SIDs. Geomagnetism and Aeronomy. 1998, vol. 38, no. 3, pp. 341–346.

15. Rukovodstvo URSI po interpretatsii i obrabotke ionogramm [URSI Manual on Ionogram Interpretation and Processing]. Moscow, Nauka Publ., 1977, 342 p.

16. Starodubtsev S.A., Baishev D.G., Grigoryev V.G., Karimov R.R., Kozlov V.I., Korsakov A.A., Makarov G.A., Moiseev A.V. Analyzing solar, cosmic, and geophysical events in September 2017, SHIСRA SB RAS complex observations. Solar-Terr. Phys. 2019, vol. 5, iss. 1, pp. 14–27. DOI:https://doi.org/10.12737/stp-51201903.

17. Todoroki Y., Maekawa S., Yamauchi T., Horie T., Hayakawa M. Solar flare induced D region perturbation in the ionosphere, as revealed from a short-distance VLF propagation path. Geophys. Res. Lett. 2007, vol. 34, iss. 3, L03103, pp. 1–5. DOI:https://doi.org/10.1029/2006GL028087.

18. Shefov N.N., Semenov A.I., Homich V.Yu. Izluchenie verhnej atmosfery – indikator ee struktury i dinamiki [Atmospheric Radiation as an Indicator of Its Structure and Dynamics]. Moscow, GEOS Publ., 2006. 741 p. (In Russian).

19. Yаhnin A.G. Magnetospheric substorm: Main manifestations and possible mechanisms. Plazmennaya geliogeofizika [Plasma Heliogeophysics]. Moscow, Fizmatlit Publ., 2008, vol. 1. pp. 465–483. (In Russian).

20. Yumoto K., Tanaka Y., Oguti T., Shiokawa K., Yoshimura Y., Isono A., Fraser B.J., Menk F.W., and the 210 degrees MM Magnetic Observation Group. Globally coordinated magnetic observations along 210° magnetic meridian during STEP period, 1, Preliminary results of low-latitude Pc 3’s. J. Geomagnetism and Geoelectricity. 1992, vol. 44, pp. 261–276.

21. URL: http://www.nmdb.eu (accessed March 22, 2024).

22. URL: http://stjarnhimlen.se/comp/tutorial.html (accessed March 22, 2024).

23. URL: https://cdaw.gsfc.nasa.gov/CME_list (accessed April 20, 2023).

24. URL: https://www.spaceweather.com (accessed April 20, 2023).

25. URL: https://solarmonitor.org (accessed April 20, 2023).

26. URL: https://planetcalc.ru/7721/?thanks=1 (accessed April 20, 2023).

27. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/ (accessed November 14, 2023).

28. URL: https://wdc.kugi.kyoto-u.ac.jp/ae_realtime/ (accessed April 20, 2023).

29. URL: https://supermag.jhuapl.edu/ (accessed November 14, 2023).

30. URL: https://ampere.jhuapl.edu/ (accessed November 14, 2023)

31. URL: https://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html (accessed November 14, 2023).

Войти или Создать
* Забыли пароль?