DISTURBANCES OF IONOSPHERIC RADIO CHANNEL DURING MAGNETIC STORMS IN NOVEMBER–DECEMBER 2023
Аннотация и ключевые слова
Аннотация (русский):
This paper presents the results of analysis of oblique ionospheric sounding data obtained with continuous chirp signal on the subauroral paths Magadan—Irkutsk and Norilsk—Irkutsk. It specifies the interplanetary sources of magnetic storms in November–December 2023. It was established that signals propagating outside the great-circle arc and additional diffuse reflections can be found in oblique sounding ionograms in intense magnetospheric convection field. Their appearance can be related to refraction of radio waves on the polar wall of the main ionospheric trough and scattering by small-scale inhomogeneities. Connection has been revealed between variations in the maximum observed frequencies of HF radio wave propagation modes with the spatial position of the main ionospheric trough and the equatorial boundary of diffuse electron precipitation zone.

Ключевые слова:
radio wave propagation, radio channel, magnetosphere, high-latitude ionosphere, oblique ionospheric sounding, main ionospheric trough, diffuse electron precipitation
Список литературы

1. Akasofu S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, vol. 28, pp. 121–190. DOI:https://doi.org/10.1007/BF00218810.

2. Basler R.P., Price G.H., Tsunoda R.T., Wong T.L. Ionospheric distortion of HF signals. Radio Sci. 1988, vol. 23, no 4, pp. 569–579. DOI:https://doi.org/10.1029/RS023i004p00569.

3. Bergin A., Chapman S.C., Gjerloev J.W. AE, DST, and their SuperMAG counterparts: The effect of improved spatial resolution in geomagnetic indices. J. Geophys. Res. 2020, vol. 125, e2020JA027828. DOI:https://doi.org/10.1029/2020JA027828.

4. Besprozvannaya A.S., Ben’kova N.P. Large-scale structural features of the F2 layer at high latitudes Proc. International Symposium “Physical Processes in the Trough Region during Disturbances”. Garzau, Germany (31.03-04.04.1987). Berlin, 1988, pp. 25–39. (In Russian).

5. Blagoveshchenskii D.V. Effect of magnetic storms (substorms) on HF propagation: A review. Geomagnetism and Aeronomy. 2013, vol. 53, no. 4, pp. 409–423. DOI: 10.1134/ S0016793213040038.

6. Blagoveshchenskii D.V. Anomalous phenomena on HF radio paths during geomagnetic disturbances. Geomagnetism and Aeronomy. 2016, vol. 56, no. 4, pp. 448–456. DOI:https://doi.org/10.1134/S0016 793216040022.

7. Blagoveshchensky D.V., Borisova T.D. Substorm effects of ionosphere and propagation. Radio Sci. 2000, vol. 35, no. 5, pp. 1165–1171. DOI:https://doi.org/10.1029/1998RS001776.

8. Blagoveshchensky D.V., Zherebtsov G.A. High-Latitude Geophysical Phenomena and Prediction of Short-Wave Radio Channels. Moscow, Nauka Publ., 1987, 272 p. (In Russian).

9. Blagoveshchensky D.V., Kalishin A.S., Sergeyeva M.A. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events. Ann. Geophys. 2008, vol. 26, iss. 6, pp. 1479–1490. DOI:https://doi.org/10.5194/angeo-26-1479-2008.

10. Burke W.J., Huang C.Y., Marcos F.A., Wise J.O. Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, iss. 3, pp. 279–287. DOI:https://doi.org/10.1016/j.jastp.2006.05.027.

11. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, no. 31, pp. 4204–4214. DOI:https://doi.org/10.1029/JA080 i031p04204.

12. Davis K. Radio Waves in the Ionosphere. Moscow, Mir Publ., 1973. 502 p. (In Russian).

13. Davies E.E., Forsyth R.J., Good S.W., Kilpua E.K.J. On the radial and longitudinal variation of a magnetic cloud: ACE, Wind, ARTEMIS and Juno observations. Solar Phys. 2020, vol. 295, article number 157. DOI:https://doi.org/10.1007/s11207-020-01714-z.

14. Deminov M.G., Shubin V.N. Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy. 2018, vol. 58, no. 3, pp. 348–355. DOI:https://doi.org/10.1134/S001679321 8030064.

15. Dremuhina L.A., Lodkina I.G., Ermolaev Ju.I. Correlation between solar wind parameters of different types and geomagnetic activity indices in 1995–2016. Proc. XLI Annual Seminar “Physics of Auroral Phenomena”. Apatity (12–16 March 2018), pp. 34–37. DOI:https://doi.org/10.25702/KSC.2588-0039.2018.41.34-37. (In Russian).

16. Fang X., Randall C.E., Lummerzheim D., Solomon S.C., Mills M.J., Marsh D.R., et al. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res.: Space Phys. 2008, vol. 113, A09311. DOI:https://doi.org/10.1029/2008JA013384.

17. Galperin Yu.I., Ponomarev Ju.N., Zosimova A.G. Direct measurements of drift rate of ions in upper atmosphere during a magnetic storm. Cosmic Res. 1973, vol. 11, no. 2, p. 240.

18. Galperin Yu.I., Ponomarev V.N., Zosimova A.G. Plasma convection in the polar ionosphere. Ann. Geophys. 1974, vol. 30, no. 1, pp. 1–7.

19. Galperin Iu.I. , Crasnier J., Sauvaud J.-A., Lisakov Iu.V., Nikolaenko L.M., Sinitsyn V.M., Khalipov V.L. The diffuse auroral zone. I - A model for the equatorial boundary of the diffuse surge zone of auroral electrons in the evening and midnight sectors. Cosmic Res. 1977, vol. 15, no. 3, pp. 362–374.

20. Gonzalez W.D., Joselyn J.A, Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T. et al. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, iss. A4, pp. 5771–5792. DOI:https://doi.org/10.1029/93JA02867.

21. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458–463. DOI:https://doi.org/10.1134/S1054661812030042.

22. Hunsucker R.D., Bates H.F. Survey of polar and auroral region effects on HF propagation. Radio Sci. 1969, vol. 4, no. 4, pp. 347–365. DOI:https://doi.org/10.1029/RS004i004p00347.

23. Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge University Press, 2003, 617 p. DOI:https://doi.org/10.1017/CBO9780511535758.

24. Joselyn J.A., Tsurutani B.T. Geomagnetic sudden impulses and storm sudden commencement. A note on terminology. Eos, Transactions American Geophysical Union. 1990, vol. 71, iss. 47, pp. 1808–1811. DOI:https://doi.org/10.1029/90EO00350.

25. Kamide Y., Winningham J.D. A statistical study of the “instantaneous” nightside auroral oval: The equatorward boundary of electron precipitation as observed by the Isis 1 and 2 satellites. J. Geophys. Res. 1977, vol. 82, iss. 35, pp. 5573–5588. DOI:https://doi.org/10.1029/JA082i035p05573.

26. Kamide Y., Yokoyama N., Gonzalez W., Tsurutani B.T., Daglis I.A., Brekke A., Masuda S. Two-step development of geomagnetic storms. J. Geophys. Res. 1998, vol. 103, iss. A4, pp. 6917–6921. DOI:https://doi.org/10.1029/97JA03337.

27. Khalipov V.L., Galperin Iu.I., Lisakov Iu.V., Krane Zh., Nikolaenko L.M., Sinitsyn V.M., Sovo Zh.-A. Diffuse auroral zone. II - Formation and dynamics of the polar rim of the subauroral ionospheric trough in the nighttime sector. Cosmic Res. 1977, vol. 15, no. 5, pp. 708–724. (In Russian).

28. Kilpua E., Koskinen H.E.J., Pulkkinen T.I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys. 2017, vol. 14, article number 5. DOI:https://doi.org/10.1007/s41116-017-0009-6.

29. Kurkin V.I., Ponomarchuk S.N., Smirnov V.F. On influence of the main ionospheric troughon SW-signal characteristics on routesof tilt sounding .Solnechno-zemnaja fizika [Solar-Terrestrial Phys.]. 2004, iss. 5, pp. 124–127. (In Russian).

30. Kurkin V.I. Matyushonok S.M., Pirog O.M., Poddelsky I.N., Ponomarchuk S.N., Rozanov S.V., Smirnov V.F. The dynamics of the auroral oval and ionospheric trough boundaries according to data from the DMSP satellites and ground-based ionosonde network. Adv. Space Res. 2006, vol. 38, no. 8, pp. 1772–1777. DOI:https://doi.org/10.1016/j.asr.2006.03.023.

31. Kurkin V.I., Medvedeva I.V., Podlesnyi A.V. Effect of sudden stratosphere warming on characteristics of medium-scale traveling ionospheric disturbances in the Asian region of Russia. Adv. Space Res. 2024, vol. 73, no. 7, pp. 3613–3623. DOI:https://doi.org/10.1016/j.asr.2023.09.020.

32. Loewe C.A., Prolss G.W. Classificatio and mean behavior of magnetic storm. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209–14213. DOI:https://doi.org/10.1029/96JA04020.

33. Möller H.G. Backscatter results from Lindau-II. The movement of curtains of intense irregularities in the polar F-layer. J. Atmos. Terr. Phys. 1974, vol. 36, no. 9, pp. 1487–1501. DOI:https://doi.org/10.1016/0021-9169(74)90227-X.

34. Nishida A. Geomagnetic Diagnosis of the Magnetosphere. Springer Nature, 1978, 256 p.

35. Pilkington G.R., Münch J.W., Braun H.J., Möller H.G. Comparison of ground HF backscatter and simultaneous particle and plasma pause measurements from a polar orbiting satellite. J. Atmos. Terr. Phys. 1975, vol. 37, no. 2, pp. 337–347. DOI:https://doi.org/10.1016/0021-9169(75)90115-4.

36. Podlesnyi A.V., Bryn’ko I.G., Kurkin V.I., Berezovsky V.A., Kiselev A.M., Petukhov E.V. Multifunctional chirp ionosonde for ionosphere monitoring. Geliogeofizicheskie issledovanija [Heliogeophysical Res.]. 2013, no. 4, pp. 24–31. (In Russian).

37. Polekh N.M., Zolotukhina N.A., Romanova E.B., S. N. Ponomarchuk, Kurkin V.I., Podlesnyi A.V. Ionospheric effects of magnetospheric and thermospheric disturbances on March 17–19, 2015. Geomagnetism and Aeronomy. 2016, vol. 56, no. 5, pp. 557–571. DOI:https://doi.org/10.1134/S0016793216040174.

38. Ponomarchuk S.N., Grozov V.P. Automatic interpretation of oblique sounding ionograms based on hybrid algorithms. Solar-Terr. Phys. 2024, vol. 10, iss. 2, pp. 102–110. DOI:https://doi.org/10.12737/stp-102202410.

39. Ponomarchuk S.N., Kurkin V.I., Ilyin N.V., Penzin M.S. HF radio path modeling by waveguide approach. Solar-Terr. Phys. 2024, vol. 10, iss. 2, pp. 93–101. DOI:https://doi.org/10.12737/stp-102202409.

40. Richardson I.G., Zhang J. Multiple-step geomagnetic storms and their interplanetary drivers. Geophys. Res. Lett. 2008, vol. 35, article number L06S07. DOI:https://doi.org/10.1029/2007GL032025.

41. Rogers N.C., Warrington E.M., Jones T.B. Large HF bearing errors for propagation paths tangential to auroral oval. IEE Proceedings-Microwaves, Antennas and Propagation. 1997, vol. 144, no. 2, pp. 91–96. DOI:https://doi.org/10.1049/ip-map:19970663.

42. Rogers N.C., Warrington E.M., Jones T.B. Oblique ionogram features associated with off-great circle HF propagation at high and sub-auroral latitudes. Proc. IEE. Microwaves, Antennas and Propagation. 2003, vol. 150, no. 4, pp. 295–300. DOI:https://doi.org/10.1049/ip-map:20030552.

43. Sergeev V.A., Tsyganenko N.A. Magnitosfera Zemli [Earth’s Magnetosphere]. Moscow, Nauka Publ., 1980, 174 p. (In Russian).

44. Sinevich A.A., Chernyshov A.A., Chugunin D.V., Mogilevsky M.M., Miloch W.J. The Internal structure of a polarization jet/SAID: A stratified polarization jet/SAID. Geomagnetism and Aeronomy. 2023, vol. 63, no. 6. pp. 747–756. DOI:https://doi.org/10.1134/S0016793223600583.

45. Stepanov A.E., Halipov V.L., Golikov I.A., Bondar E.D. Polarization Jet: Narrow and Fast Drifts of Subauroral Ionospheric Plasma. Jakutsk, SVFU Publ., 2017, 176 p. (In Russian).

46. Uryadov V.P., Kurkin V.I., Vertogradov G.G., Vertogradov V.G., Ponyatov A.A., Ponomarchuk S.N. Features of propagation of HF signals on mid-latitude paths under conditions of geomagnetic disturbances. Radiophysics and Quantum Electronics. 2004, vol. 47, no. 12, pp. 933–946.

47. Uryadov V.P., Ponyatov A.A., Vertogradov G.G., Vertogradov V.G., Kurkin V.I., Ponomarchuk S.N. Dynamics of the auroral oval during geomagnetic disturbances observed by oblique sounding of the ionosphere in the Eurasian longitudinal sector. International J. Geomagnetism and Aeronomy. 2005, vol. 6, GI1002. DOI:https://doi.org/10.1029/2004GI000078.

48. Warrington E.M., Rogers N.C., Stocker A.J., Siddle D.R., Al-Behadili H.A.H., Honary F., et al. Developments in HF propagation predictions to support communications with aircraft on trans-polar routes. 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS). IEEE, 2017, pp. 1953–1959. DOI:https://doi.org/10.1109/PIERS.2017.8262070.

49. Zaalov N.Y., Warrington E.M., Stocker A.J. The simulation of off-great circle HF propagation effects due to the presence of patches and arcs of enhanced electron density within the polar cap ionosphere. Radio Sci. 2003, vol. 38, no 3, p. 18. DOI:https://doi.org/10.1029/2002RS002798.

50. Zaalov N.Y., Warrington E.M., Stocker A.J. A ray-tracing model to account for off–great circle HF propagation over northerly paths. Radio Sci. 2005, vol. 40, RS4006, pp. 1–14. DOI:https://doi.org/10.1029/2004RS003183.

51. Zhao H, Zong Q.G, Wei Y, Wang Y. Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storms. Science China Technological Sciences. 2011, vol. 54, pp. 1445–1454. DOI:https://doi.org/10.1007/s11431-011-4319-y

52. Zherebtsov G.A., Mizun Ju.G., Mingalev V.S. Physical Processes in the Polar Ionosphere. Moscow, Nauka Publ., 1988, 232 p. (In Russian).

53. URL: https://kp.gfz-potsdam.de/en/data (accessed February 15, 2024).

54. URL: https://wdc.kugi.kyoto-u.ac.jp/dst_realtime/index.html (accessed February 14, 2024).

55. URL: https://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/ (accessed February 15, 2024).

56. URL: http://supermag.jhuapl.edu/indices/] (accessed April 18, 2024).

57. URL: ftp://ftp.swpc.noaa.gov/pub/warehouse/ (accessed January 15, 2024).

58. URL: http://www.solen.info/solar/old_reports/ (accessed January 14, 2024).

59. URL: http://www.solen.info/solar/coronal_holes.html (accessed April 8, 2024).

60. URL: https://cdaw.gsfc.nasa.gov/CME_list/ (accessed April 8, 2024).

61. URL: http://ckp-rf.ru/ckp/3056/(accessed January 14, 2024).

Войти или Создать
* Забыли пароль?