LONG-TERM VARIATIONS IN PEAK ELECTRON DENSITY AND TEMPERATURE OF MESOPAUSE REGION: DEPENDENCE ON SOLAR, GEOMAGNETIC, AND ATMOSPHERIC ACTIVITIES, LONG-TERM TRENDS
Аннотация и ключевые слова
Аннотация (русский):
The paper overviews the main results of the study of long-term variations in characteristics of the upper neutral atmosphere and ionosphere, obtained during the implementation of Russian Science Foundation Project No. 22-17-00146 “Experimental and theoretical study of the coupling neutral and ionized components of Earth’s atmosphere”. We study and compare long-term variations in the peak electron density and temperature of the mesopause region. Their dependences on solar, geomagnetic, and atmospheric activity, as well as long-term trends, are analyzed. The analysis is based on data from long-term measurements with the ISTP SB RAS complex of instruments. The peak electron density (NmF2) data was acquired with the Irkutsk analog automatic ionospheric station for 1955–1996 and the Irkutsk digital ionosonde DPS-4 for 2003–2021. The atmospheric temperatures at mesopause altitudes (Tm) were obtained from spectrometric observations of the hydroxyl molecule emission (OH (6-2) band, 834.0 nm, emission maximum height ~87 km) for 2008–2020. The analysis uses solar (F10.7) and geomagnetic (Ap) activity indices, as well as data on variations in the Southern Oscillation Index (SOI). The study employs simple and multiple linear regression methods. Annual average NmF2 values are found to be predominantly controlled by changes in solar flux. Analysis of regression residuals shows that the largest deviations from regression (for both simple and multiple regression) are observed in years near the maxima of solar cycles 19 (1956–1959) and 22 (1989–1991). Annual average temperature variability in the mesopause region correlates with changes in the SOI index: day-to-day variability exhibits a positive correlation with SOI; and intra-diurnal variability, a negative correlation with SOI. No significant relationship was found between year-to-year variations in the NmF2 and Tm variability.

Ключевые слова:
long-term variations, peak electron density, temperature, mesopause region, solar activity, geomagnetic activity, long-term trends
Список литературы

1. Altadill D. Time/altitude electron density variability above Ebro, Spain. Adv. Space Res. 2007, vol. 3, pp. 962–969. DOI:https://doi.org/10.1016/j.asr.2006.05.031.

2. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity. Radio Sci. 2005, vol. 40, RS5009. DOI:https://doi.org/10.1029/2004rs003179.

3. Beig G. Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response. J. Geophys. Res. Atmos. 2011, vol. 116, A00H12. DOI:https://doi.org/10.1029/2011ja 016766.

4. Bremer J. Trends in the ionospheric E and F regions over Europe. Ann. Geophys. 1998, vol. 16, no 8, pp. 986–996. DOI:https://doi.org/10.1007/s00585-998-0986-9.

5. Bremer J., Damboldt T., Mielich J., Suessmann P. Comparing long-term trends in the ionospheric F2 region with two different methods. J. Atmos. Solar-Terr. Phys. 2012, vol. 77, pp. 174–185. DOI:https://doi.org/10.1016/j.jastp.2011.12.017.

6. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, vol. 15, pp. 418–429. DOI:https://doi.org/10.1002/2016SW 001593.

7. Buresova D., Laštovička J., Hejda P., Bochnicek J. Ionospheric disturbances under low solar activity conditions. Adv. Space Res. 2014, vol. 54, pp. 185–196. DOI:https://doi.org/10.1016/j.asr.2014.04.007.

8. Cnossen I., Franzke C. The role of the Sun in long-term change in the F2 peak ionosphere: new insights from Ensemble Empirical Mode Decomposition (EEMD) and numerical modeling. J. Geophys. Res. 2014, vol. 119, no. 10, pp. 8610–8623. DOI:https://doi.org/10.1002/2014JA020048.

9. Danilov A.D., Vanina-Dart L.B. Comparison of foF2 values in the daytime and after sunset. Geomagnetism and Aeronomy. 2010, vol. 50, no 1, pp. 58–63. DOI:https://doi.org/10.1134/S001679321001007X.

10. Danilov A.D., Konstantinova A.V. Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review). Geomagnetism and Aeronomy. 2020, vol. 60, no 4, pp. 397–420. DOI:https://doi.org/10.1134/S0016793220040040.

11. Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity. Adv. Space Res. 2013, vol. 51, pp. 702–711. DOI:https://doi.org/10.1016/j.asr.2012.09.037.

12. Drob D.P., Emmert J.T., Meriwether J.W., Makela J.J., Doornbos E., Conde M., Hernandez G., Noto J., Zawdie K.A., McDonald S.E., et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Sci. 2015, vol. 2, pp. 301–319. DOI:https://doi.org/10.1002/2014EA000089.

13. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 685–693. DOI:https://doi.org/10.1016/s1364-6826(00)00029-8.

14. García-Herrera R., Calvo N., Garcia R.R., Giorgetta M.A. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res. 2006, vol. 111, D06101. DOI:https://doi.org/10.1029/2005JD006061.

15. Khomich V.Y., Semenov A.I., Shefov N.N. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Springer: Berlin/Heidelberg, Germany, 2008.

16. Laštovička J. Is the relation between ionospheric parameters and solar proxies stable? Geophys. Res. Lett. 2019, vol. 46, no. 24, pp. 14208–14213. DOI:https://doi.org/10.1029/2019GL085033.

17. Laštovička J., Burešová D. Relationships between foF2 and various solar activity proxies. Space Weather. 2023, vol. 21, e2022SW003359. DOI:https://doi.org/10.1029/2022SW003359.

18. Medvedeva I., Ratovsky K. Studying atmospheric and ionospheric variabilities from long-term spectrometric and radio sounding measurements. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 5151–5159. DOI:https://doi.org/10.1002/2015ja021289.

19. Medvedeva I.V., Ratovsky K.G. Comparative analysis of atmospheric and ionospheric variability by measurements of temperature in the mesopause region and peak electron density NmF2. Geomagnetism and Aeronomy. 2017, vol. 57, pp. 217–228. DOI:https://doi.org/10.1134/s0016793217020104.

20. Medvedeva I.V., Semenov A.I., Perminov V.I., Beletsky A.B., Tatarnikov A.V. Comparison of ground-based OH temperature data measured at Irkutsk (52° N, 103° E) and Zvenigorod (56° N, 37° E) stations with Aura MLS v3.3. Acta Geophys. 2014, vol. 62, pp. 340–349.

21. Mielich J., Bremer J. Long-term trends in the ionospheric F2 region with two different solar activity indices. Ann. Geophys. 2013, vol. 31, no. 2, pp. 291–303. DOI:https://doi.org/10.5194/angeo-31-291-2013.

22. Mikhailov A.V., Förster M., Leschinskaya T.Y. On the mechanism of the post-midnight winter NmF2 enhancements: Dependence on solar activity. Ann. Geophys. 2000, vol. 18, pp. 1422–1434. DOI:https://doi.org/10.1007/s00585-000-1422-y.

23. Offermann D., Gusev O., Donner M., Forbes J.M., Hagan M., Mlynczak M.G., Oberheide J., Preusse P., Schmidt H., Russell J.M. III. Relative intensities of middle atmosphere waves. J. Geophys. Res. Atmos. 2009, vol. 114, D06110. DOI: 10.1029/ 2008jd010662.

24. Pedatella N.M., Liu H.-L. Tidal variability in the mesosphere and lower thermosphere due to the El Niño-Southern Oscillation. Geophys. Res. Lett. 2012, vol. 39, L19802. DOI:https://doi.org/10.1029/2012gl053383.

25. Pedatella N.M., Liu H.-L. Influence of the El Niño Southern Oscillation on the middle and upper atmosphere. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 2744–2755. DOI:https://doi.org/10.1002/jgra.50286.

26. Perminov V.I., Semenov A.I., Medvedeva I.V., Zheleznov Y.A. Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia. Adv. Space Res. 2014a, vol. 54, pp. 2511–2517. DOI:https://doi.org/10.1016/j.asr.2014.01.027.

27. Perminov V.I., Semenov A.I., Medvedeva I.V., Pertsev N.N. Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes. Geomagnetism and Aeronomy. 2014b, vol. 54, pp. 230–239. DOI: 10.1134/ s0016793214020157.

28. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, no. A12, pp. 1468–1483. DOI:https://doi.org/10.1029/2002JA009430.

29. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data. Adv. Space Res. 2015, vol. 55, pp. 2041–2047. DOI:https://doi.org/10.1016/j.asr.2014.08.001.

30. Ratovsky K.G., Klimenko M.V., Dmitriev A.V., Medvedeva I.V. Relation of extreme ionospheric events with geomagnetic and meteorological activity. Atmosphere. 2022. vol. 13, no. 146. DOI:https://doi.org/10.3390/atmos13010146.

31. Rishbeth H., Mendillo M. Patterns of F2-layer variability. J. Atmos. Solar-Terr. Phys. 2001, vol. 63, pp. 1661–1680. DOI:https://doi.org/10.1016/s1364-6826(01)00036-0.

32. Ropelewski C.F., Jones P.D. An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather Review. 1987, vol. 115, pp. 2161–2165.

33. Sassi F., Kinnison D., Boville B.A., Garcia R.R., Roble R. Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res. Atmos. 2004, vol. 109, D17108. DOI:https://doi.org/10.1029/2003jd004434.

34. Semenov A.I. Variations in the atmospheric temperature response (30–100 km) to solar activity for equatorial and polar latitudes. Dokl. Earth Sci. 2008, vol. 423, pp. 1483–1487. DOI: 2008DokES.423.1483S.

35. Semenov A.I., Bakanas V.V., Perminov V.I., Zheleznov Y.A., Khomich Y.V. The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth. Geomagnetism and Aeronomy. 2002, vol. 42, pp. 390–397.

36. Shubin V.N., Deminov M.G. Global dynamic model of critical frequency of the ionospheric F2 layer. Geomagnetism and Aeronomy. 2019, vol. 59, no. 4, pp. 429–440. DOI: 10.1134/ S0016793219040157.

37. Sun Y.-Y., Liu H., Miyoshi Y., Chang L.C., Liu L. El Niño–Southern Oscillation effect on ionospheric tidal/SPW amplitude in 2007–2015 FORMOSAT-3/COSMIC observations. Earth Planets Space. 2019, vol. 71, no. 35. DOI:https://doi.org/10.1186/s40623-019-1009-7.

38. Zhang S. Ionospheric Climate Change: a report on the ISSI team research efforts. Paper presented at the 10th Workshop on long-term changes and trends in the atmosphere (Hefei, China, May 14–18, 2018).

39. URL: http://omniweb.gsfc.nasa.gov/form/dx1.html (accessed August 3, 2022).

40. URL: https://crudata.uea.ac.uk/cru/data/soi/ (accessed October 7, 2022).

41. URL: https://rscf.ru/project/22-17-00146/ (accessed August 3, 2022).

42. URL: http://ckp-rf.ru/ckp/3056/ (accessed August 3, 2022).

Войти или Создать
* Забыли пароль?