HYSTERESIS CYCLES AND INVARIANCE OF THE DST INDEX FORM DURING GEOMAGNETIC STORM DEVELOPMENT
Аннотация и ключевые слова
Аннотация (русский):
We have studied the relationship between the Dst index and heliospheric parameters during 933 isolated geomagnetic storms observed over the period from 1964 to 2010. The storms were classified by their onset type (sudden or gradual) and intensity (weak, moderate, and strong). We have analyzed the Dst index, solar wind, and interplanetary magnetic field (IMF) data accumulated using the epoch superposition method. It is shown that over the time interval of development of varying intensity storms with sudden and gradual onset the trajectory of Dst change depending on heliospheric parameters during the main phase of the storms does not coincide with its trajectory during the recovery phase, which is typical of the hysteresis phenomenon. During the storms, Dst forms hysteresis cycles with all analyzed solar wind and IMF parameters. The obtained dependences Dst(B), Dst(Bz), Dst(Ey), Dst(V), Dst(Pdyn), and Dst() have the shape of a hysteresis loop during the excitation of weak, moderate, and strong storms. The shape and area of hysteresis loops was found to change depending on heliospheric parameters and storm intensity. It is shown that the shape of the average Dst dynamics during the storms does not depend on their intensity, i.e. it is invariant. Invariant behavior is also characteristic of the shape of the average dynamics of heliospheric parameters during the magnetic storms of different intensities. Based on the nonlinear relationship of the Dst index with interplanetary parameters and the invariance of the shape of its dynamics, an integral equation of the Volterra type is proposed to describe the Dst dependence on solar wind and IMF parameters. The proposed model is suitable for interpreting the results obtained from the experimental study of hysteresis effects associated with phase shifts between changes in Dst and heliospheric parameters.

Ключевые слова:
geomagnetic storms, solar wind, heliospheric parameters, Dst index, hysteresis, invariance
Список литературы

1. Ahmed O., Badruddin B., Derouich M. Characteristics and development of the main phase disturbance in geomagnetic storms (Dst≤−50 nT). Adv. Space Res. 2024, vol. 73, iss. 9, pp. 4453–4481. DOI:https://doi.org/10.1016/j.asr.2024.01.050.

2. Asikainen T., Maliniemi V., Mursula K. Modeling the contributions of ring, tail, and magnetopause currents to the corrected Dst index. J. Geophys. Res. 2010, vol. 115, no. A12, A12203. DOI:https://doi.org/10.1029/2010JA015774.

3. Bachmann K., White O.R. Observations of hysteresis in solar cycle variations among seven solar activity indicators. Solar Phys. 1994, vol. 150, pp. 347–357. DOI:https://doi.org/10.1007/BF00712896.

4. Balasis G., Papadimitriou C., Daglis I.A., Anastasiadis A., Athanasopoulou L., Eftaxias K. Signatures of discrete scale invariance in Dst time series. Geophys. Res. Lett. 2011, vol. 38, L13103. DOI:https://doi.org/10.1029/2011GL048019.

5. Balasis G., Daglis I.A., Contoyiannis Y., Potirakis S.M., Papadimitriou C., Melis N.S., et al. Observation of intermittency-induced critical dynamics in geomagnetic field time series prior to the intense magnetic storms of March, June, and December 2015. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 4594–4613. DOI:https://doi.org/10.1002/2017JA025131.

6. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, vol. 111, A07S08. DOI:https://doi.org/10.1029/2005JA011447.

7. Bruevich E.A., Bruevich V.V., Yakunina G.V. Cyclic variations in the solar radiation fluxes at the beginning of the 21st century. Moscow University Physics Bulletin. 2018, vol. 73, no. 2, pp. 216–222. DOI:https://doi.org/10.3103/S0027134918020030.

8. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, pp. 4204–4214.

9. Danilova O.A., Ptitsyna N.G., Sdobnov V.E. Hysteresis phenomena in the response of geomagnetic activity and cosmic ray parameters to variations in the interplanetary medium during a magnetic storm. Solar-Terrestrial Physics. 2024, vol. 10, iss. 3, pp. 66–74. DOI:https://doi.org/10.12737/stp-103202408.

10. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Expected hysteresis of the 23-rd solar cycle in the heliosphere. Adv. Space Res. 2002, vol. 29, iss. 3, pp. 475–479. DOI:https://doi.org/10.1016/S0273-1177(01)00615-9.

11. Donnelly R.F. Solar UV spectral irradiance variations. J. Geomagn. Geoelectr. Suppl. 1991, vol. 43, pp. 835–842.

12. Donner R.V., Balasis G. Correlation-based characterisation of time-varying dynamical complexity in the Earth’s magnetosphere. Nonlin. Processes Geophys. 2013, vol. 20, pp. 965–975. DOI:https://doi.org/10.5194/npg-20-965-2013.

13. Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Dynamics of interplanetary parameters and geomagnetic indices during magnetic storms induced by different types of solar wind. Geomagnetism and Aeronomy. 2019, vol. 59, no. 6, pp. 639–650. DOI:https://doi.org/10.1134/S0016793219060069.

14. Guglielmi A.V. On the phenomenological theory of magnetic storms. Solar-Terrestrial Physics. 2016, vol. 2, iss. 2, pp. 37–45. DOI:https://doi.org/10.12737/20998.

15. Hutchinson J.A., Wright D.M., Milan S.E. Geomagnetic storms over the last solar cycle: A superposed epoch analysis. J. Geophys. Res. 2011, vol. 116, A09211. DOI:https://doi.org/10.1029/2011JA016463.

16. Ji E.-Y., Moon Y.-J., Gopalswamy N., Lee D.-H. Comparison of Dst forecast models for intense geomagnetic storms. J. Geophys. Res. 2012, vol. 117, A03209. DOI:https://doi.org/10.1029/2011JA016872.

17. Johnson J.R. Wing S. Camporeale E. Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst. Ann. Geophys. 2018, vol. 36, no. 4, pp. 945–952. DOI:https://doi.org/10.5194/angeo-36-945-2018.

18. Kostitsyn V.A. An experiment in the mathematical theory of hysteresis. Matematicheskii sbornik [Collections of scientific works in mathematics]. 1924, vol. 32, no. 1, pp. 192–202. (In Russian).

19. Krasnov M.L. Integralnye uravneniya [Integral equations]. Moscow, Nauka Publ., 1975, 303 p. (In Russian).

20. Kurazhkovskaya N.A., Kurazhkovskii A.Yu. Hysteresis effect between geomagnetic activity indices (Ap, Dst) and interplanetary medium parameters in solar activity cycles 21–24. Solar-Terrestrial Physics. 2023, vol. 9, iss. 3, pp. 68–76. DOI:https://doi.org/10.12737/stp-93202308.

21. Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Solar-Terrestrial Physics. 2021, vol. 7, iss. 4. pp. 24–32. DOI:https://doi.org/10.12737/stp-74202104.

22. Loewe C.A., Prӧlss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209–14213. DOI:https://doi.org/10.1029/96JA04020.

23. Love J.J., Mursula K. Challenging ring-current models of the Carrington storm. J. Geophys. Res.: Space Phys. 2024, vol. 129, e2024JA032541. DOI:https://doi.org/10.1029/2024JA032541.

24. Lyatsky W., Tan A. Solar wind disturbances responsible for geomagnetic storms. J. Geophys. Res. 2003, vol. 108, iss. A3, 1134. DOI:https://doi.org/10.1029/2001JA005057.

25. Obridko V.N., Kanonidi Kh.D., Mitrofanova T.A., Shelting B.D. Solar activity and geomagnetic disturbances. Geomagnetism and Aeronomy. 2013, vol. 53, no. 2, pp. 147–156. DOI:https://doi.org/10.1134/S0016793213010143.

26. O’Brien T.P., McPherron R.L. An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J. Geophys. Res. 2000, vol. 105, no. A4, pp. 7707–7719. DOI:https://doi.org/10.1029/1998JA000437.

27. Özgüç A., Kilcik A., Rozelot J.P. Effects of hysteresis between maximum CME speed index and typical solar activity indicators during cycle 23. Solar Phys. 2012, vol. 281, pp. 839–846. DOI:https://doi.org/10.1007/s11207-012-0087-5.

28. Özgüç A., Kilcik A., Georgieva K., Kirov B. Temporal offsets between maximum CME speed index and solar, geomagnetic, and interplanetary indicators during solar cycle 23 and the ascending phase of cycle 24. Solar Phys. 2016, vol. 291, pp. 1533–1546. DOI:https://doi.org/10.1007/s11207-016-0909-y.

29. Ptitsyna N.G., Danilova O.A., Tyasto M.I. Phenomena of hysteresis in the cutoff rigidity of cosmic rays during the superstorm of November 7–8, 2004. Geomagnetism and Aeronomy. 2021, vol. 61, pp. 483–491. DOI:https://doi.org/10.1134/S0016793221040137.

30. Reda R., Giovannelli L., Alberti T. On the time lag between solar wind dynamic parameters and solar activity UV proxies. Adv. Space Res. 2023, vol. 71, iss. 4, pp. 2038–2047. DOI:https://doi.org/10.1016/j.asr.2022.10.011.

31. Taylor J.R., Lester M., Yeoman T.K. A superposed epoch analysis of geomagnetic storms. Ann. Geophys. 1994, vol. 12, iss. 7, pp. 612–624. DOI:https://doi.org/10.1007/s00585-994-0612-4.

32. Vasyliūnas V.M. Reinterpreting the Burton–McPherron–Russell equation for predicting Dst. J. Geophys. Res. 2006, vol. 111, no. A7, A07S04. DOI:https://doi.org/10.1029/2005JA011440.

33. Yermolaev Y.I., Yermolaev M.Y., Lodkina I.G., Nikolaeva N.S. Statistical investigation of heliospheric conditions resulting in magnetic storms. Cosmic Res. 2007, vol. 45, no.1, pp. 1–8. DOI:https://doi.org/10.1134/S0010952507010017.

34. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Specific interplanetary conditions for CIR-, Sheath- and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 2010a, vol. 28, pp. 2177–2186. DOI:https://doi.org/10.5194/angeo-28-2177-2010.

35. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Relative occurrence rate and geoeffectiveness of large-scale types of the solar wind. Cosmic Res. 2010b, vol. 48, no. 1, 1–30. DOI:https://doi.org/10.1134/S0010952510010016.

36. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 2012, vol. 117, A00L07. DOI:https://doi.org/10.1029/2011JA017139.

37. Zhang J.-C., Liemohn M.W., Kozyra J.U., Thomsen M.F., Elliott H.A., Weygand J.M. A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J. Geophys. Res. 2006, vol. 111, A01104. DOI:https://doi.org/10.1029/2005JA011065.

38. Zotov O.D., Klain B.I., Kurazhkovskaya N.A. Stochastic resonance in the Earth’s magnetosphere dynamics. Proc. 7th International Conference “Problems of Geocosmos”. St. Petersburg, May 26–30, 2008. Eds. V.N. Troyan, M. Hayakawa, V.S. Semenov. St. Petersburg, 2008, pp. 360‒364.

39. Zotov O.D., Klain B.I. The trigger mode in the dynamics of the magnetosphere. Materialy 4 Vserossiskoi konferentsii s mezhdunarodnym uchastiem “Triggernye efekty v geosistemakh” [Proc. of the IV All-Russian Conference with International Participation “Trigger Effects in Geosystems” (Moscow, June 6–9, 2017)]. Eds. V.V. Adushkina, G.G. Kocharyan. Moscow, GEOS Publ., 2017, pp. 442‒449. (In Russian).

40. Zotov O., Klain B., Kurazhkovskaya N., Kurazhkovskii A. Hysteresis cycles and invariance of the Dst index form during geomagnetic storm development. 15th International Conference and School Problems of Geocosmos. Abstracts. St. Peterburg, Russia, April 22–26, 2024. GC2024-STP078.

41. URL: http://www.wdcb.ru/stp/geomag/geomagnetic_storms.ru.html (accessed November 10, 2024).

42. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni/ (accessed November 10, 2024).

Войти или Создать
* Забыли пароль?