SEMI-EMPIRICAL METHOD OF STUDYING THE D-LAYER AERONOMY. II. EVIDENCE-BASED CALIBRATION OF THE METHOD
Аннотация и ключевые слова
Аннотация (русский):
This paper presents the results of evidence-based calibration of a new semi-empirical method for studying the D-layer aeronomy. We use simultaneous measurements of altitude profiles of electron density Ne(h) and ionization rate q(h) under disturbed conditions (case 1) and mean under various heliogeophysical conditions at low (LSA) and high (HSA) solar activity (case 2). The experimental data and methods are described in detail. It is shown that it is necessary to include temperature dependences of rate constants T(h) for all heliogeophysical conditions. Care should be taken when choosing the T(h) distribution with due regard to most of known factors having an effect on it, wherever possible. We draw a conclusion on the practicability of the use of new photodetachment rates that depend on the solar zenith angle and h. The unknown dissociative recombination rate for cluster positive ions and the photodetachment rate can be reasonably considered as free parameters, of course within due limits. Under disturbed ionospheric conditions, the evidence shows a fall in Ne at all altitudes h when q≈(1.3÷2)⋅10² cm⁻³ s⁻¹ with further increase in the parameters with q, which is confirmed by calculations using the semi-empirical model, yet for a wider range of q variations. The theoretical model that explains the aforementioned effect is the subject of future study. The results for dayside coincide qualitatively with our knowledge on the behavior of aeronomy parameters in the D layer. The studies suggest that the presented method allows qualitative estimations under all heliogeophysical conditions and even wholly satisfactory quantitative estimations under disturbed ionospheric conditions.

Ключевые слова:
lower ionosphere, missile launch, aeronomy, inverse problem
Список литературы

1. Avdyushin S.I., Alpatov V.V., Vetchinkin N.V., Romanovskij Yu.A. Active experiments and anthropogenic effects in near-Earth space: Methodology, equipment, results. Space Model. 2007, vol. 2, pp. 891–917. Moscow, 2007. (In Russian).

2. Bekker S.Z. Probabilistic-statistical model of low undisturbed mid-latitude ionosphere verified according to data of ground-based radio physical measurements. Thesis Abstract. Moscow, IDG RAN Publ., 2018, 26 p. (In Russian).

3. Bekker S.Z., Ryakhovsky I.A., Korsunskaya J.A. Modeling of the lower ionosphere during solar X-ray flares of different classes. J. Geophys. Res.: Space Phys. 2021, vol. 126, no. 2, e2020JA028767. DOI:https://doi.org/10.1029/2020JA028767.

4. Boyarchuk A.K, Karelin A.V., Shirokov R.V. Basis Model of the Ionized Atmosphere Kinetics. Moscow, 2006, 203 p. (In Russian).

5. Danilov A.D., Rodevich A.YU., Smirnova N.V. Parametric model of the D-region, taking meteorological effects into account. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1991, vol. 31, no. 5, pp. 881–885. (In Russian).

6. Danilov A.D., Rodevich A.YU., Smirnova N.V. Problems with incorporating a new D-region model into the IRI. Adv. Space Res. 1995, vol. 15, no. 2, pp. 165–167.

7. Friedrich M., Torkar K.M. FIRI: A semiempirical model of the lower ionosphere. J. Geophys. Res. 2001, vol. 106, no. A10, pp. 21409–21418.

8. Friedrich M., Pock C., Torkar K. FIRI-2018, an updated empirical model of the lower ionosphere. J. Geophys. Res.: Space Phys. 2018, vol. 123, рр. 6737−6751. DOI: 10.1029/ 2018JA025437.

9. Gordillo Vazquez F.J. Air plasma kinetics under the influence of sprites. J. Phys. D: Applied Phys. 2008, vol. 41, p. 234016.

10. Haerendel L.G., Sagdeev R.Z. Artificial plasma jet in ionosphere. Adv. Space Res. 1981, vol. 1, no. 2, p. 29–44. DOI:https://doi.org/10.1016/0273-1177(81)90270-2.

11. Ivanov-Kholodny G.S., Mikhailov A.V. Prediction of the State of the Ionosphere (Deterministic Approach). Leningrad, Hydrometeoizdat Publ. 1980, 190 p. (In Russian).

12. Kozlov S.I. Ion kinetics in the ionosphere night-side D-region. Kosmicheskie issledovaniya [Cosmic Res.]. 1971, vol. 9, no. 1, pp. 81–90. (In Russian).

13. Kozlov S.I. Aeronomy of Artificially Disturbed Earth’s Atmosphere and Ionosphere. Moscow, TORUS-PRESS, 2021. 268 p. (In Russian).

14. Kozlov S.I., Smirnova N.V. Methods and means of creating artificial formations in the circumterrestrial medium and estimation of the characteristics of arising perturbations. I. Methods and means of creating artificial formations. Kosmicheskie issledovaniya [Cosmic Res.]. 1992а, vol. 30, no. 4, pp. 495–523. (In Russian).

15. Kozlov S.I., Smirnova N.V. Methods and means of creating artificial formations in the circumterrestrial medium and estimation of the characteristics of arising perturbations. II. Estimation of the characteristics of artificial perturbations. Kosmicheskie issledovaniya [Cosmic Res.]. 1992b, vol. 30, no. 5, pp. 629–693.

16. Kozlov S.I., Lyahov A.N. Photodetachment rates for О– and in the D layer of the ionosphere as function of solar zenith angle and solar activity. Solar-Terr. Phys. 2023, vol. 9, iss. 4, pp. 95–98. DOI:https://doi.org/10.12737/stp-94202312.

17. Kozlov S.I., Lyahov A.N., Bekker S.Z. Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems. Geomagnetism and Aeronomy. 2014, vol. 54, iss. 6, pp. 750–762.

18. Kozlov S.I., Bekker S.Z., Lyahov A.N., Nikolaishvili S.S. A semiempirical approximate method for investigating some problems of the aeronomy of the D-region of the ionosphere. I. Basic Principles of Method Development and Basic Equations. Geomagnetism and Aeronomy. 2022, vol. 62, iss. 5, pp. 607–613. DOI:https://doi.org/10.1134/S0016793222050073.

19. Nesterova I.I., Ginzburg E.I. Catalogue of electron density profiles of the ionosphere D region. Novosibirsk, 1985, 210 p. (In Russian).

20. Proc. COSPAR Symposium on Solar Particle Event of November 1969. AFCRL. 72. 0474. Special report N144. Ed. J.C. Ulwick. 1972, 703 p.

21. Sellers B., Stroscio M.A. Rocket-measured effective recombination coefficients in the disturbed D-region. J. Geophys. Res. 1975, vol. 80, no. 16, pp. 2241–2246.

22. Smirnova N.V., Kozlov S.I., Vlaskov V.A. Special-purpose aeronomic model for investigating the artificial modification of the middle atmosphere and lower ionosphere. II - Comparison of calculation results with experimental data. Kosmicheskie issledovaniya [Cosmic Res.]. 1990, vol. 28, no. 1, pp. 77–84. (In Russian).

23. Swider W. Aeronomic aspects of the polar D-region. Space Sci. Rev. 1977, vol. 20, pp. 69–114. DOI:https://doi.org/10.1007/BF02186894.

24. Swider W., Dean W.A. Effective electron loss coefficient of the disturbed daytime D-region. J. Geophys. Res. 1975, vol. 80, iss. 13, pp. 1815–1819. DOI:https://doi.org/10.1029/JA080i013p01815.

25. Swider W., Narcisi R.S., Keneshea T.J., Ulwick J.C. Electron loss during a nighttime PCA event. J. Geophys. Res. 1971, vol. 79, iss. 19, pp. 4691–4694.

26. Swider W., Keneshea T.J., Foley C.I. An SPE-disturbed D-region model. Planetary and Space Sci. 1978, vol. 26, iss. 9, pp. 883–892. DOI:https://doi.org/10.1016/0032-0633(78)90111-3.

27. Van Gaens W., Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D: Appl. Phys. 2013. v. 46, no. 27, p. 275201. DOI:https://doi.org/10.1088/0022-3727/46/27/275201.

28. Whitten R.C., Poppoff I.G., Edmonds R.S., Berning W.W. Effective recombination coefficients in the lower ionosphere. J. Geophys. Res. 1965, vol. 70, iss. 7, pp. 1737–1742. DOI:https://doi.org/10.1029/JZ070i007p01737.

29. World Meteorological Organization (WMO). Global Ozone Research and Monitoring Project Report. 1985, no. 16, 392 p.

Войти или Создать
* Забыли пароль?