Институт физики Земли им. О.Ю. Шмидта РАН
Геофизический Центр РАН
Москва, Россия
Нижний Новгород, Россия
Иркутск, Россия
с 01.01.2021 по настоящее время
Иркутск, Иркутская область, Россия
с 01.01.1999 по 01.01.2023
Апатиты, Мурманская область, Россия
Борок, Россия
Нижний Новгород, Россия
Москва, Россия
Москва, Россия
Борок, Россия
In July–August 2024 on the Kola Peninsula, the FENICS-2024 experiment was conducted to generate artificial electromagnetic signals at night, using two power transmission lines as a horizontal radiating antenna. The generator frequency varied discretely from session to session from 1 to 194 Hz with current amplitude from ~150 A at low frequencies to ~40 A at high frequencies. The paper presents the results of the first stage of the experiment when the power transmission line Vykhodnoy—Olenegorsk with a distance between earth electrodes of substances L=84 km was utilized as a radiating antenna. Magnetic stations, located from ~1200 to ~2100 km from the nodal substation, recorded signals with frequencies from 1 to 9 Hz with ~0.3–~6.0 fT/A amplitudes normalized to the emitter current. The observations have shown the promise of the new type of active experiments on creating a probing signal for magnetotelluric sounding over a large area. The observation results will be compared with theoretical models in the subsequent work.
ULF emissions, distributed network, FENICS, power transmission line, active experiments
1. Anisimov S.V., Chulliat A., Dmitriev E.M. Information-measuring complex and database of mid-latitude Borok Geophysical Observatory. Russian Journal of Earth Sciences. 2008, vol. 10, ES3007. DOI:https://doi.org/10.2205/2007ES000227.
2. Barannik M.B., Kolobov V.V., Shevtsov A.N., Zhamaletdinov A.A. Directional generator-measuring complex “Energy-2m” for seismic monitoring and probing of ore objects. Seismicheskie instrumenty [Seismic Instruments]. 2012, vol. 48, no. 1, pp. 5–25. (In Russian).
3. Belyaev P.P., Polyakov S.V., Ermakova E.N., Isaev S.V., Yakunin M.N., Sobchakov L.A., et al. The first experiments on the generation and reception of artificial ULF emission (0.3–12 Hz) at a distance of 1500 km. Radiophysics and Quantum Electronics. 2002, vol. 45, no. 2, pp. 135–146. DOI:https://doi.org/10.1023/A:1015949625839.
4. Berdichevskii M.N., Dmitriev V.I. Magnitotelluricheskoye zondirovanie gorizontalno-neodnorodnykh sred [Magnetotelluric sounding of horizontally homogeneous medium]. Moscow, Nedra Publ., 1992, 250 p. (In Russian).
5. Berthold W.K., Harris A.K., Hope H.J. World-wide effects of hydromagnetic waves due to Argus. J. Geophys. Res. 1960, vol. 65, pp. 2233–2239. DOI:https://doi.org/10.1029/JZ065i008p02233.
6. Chetaev L.N. Direkstionnyi analis magnitotelluricheskikh nabludenii [Directional analysis of magnetotelluric observations]. Moscow, IPhE AS USSR Publ., 1985, 228 p.
7. Chulliat A., Anisimov S.V. The Borok Intermagnet magnetic observatory. Russian Journal of Earth Sciences. 2008, vol. 10, ES3003. DOI:https://doi.org/10.2205/2007ES000238.
8. Eliasson B., Chang C.-L., Papadopoulos K.J. Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. 2012, vol. 117, A10320. DOI:https://doi.org/10.1029/2012JA017935.
9. Ermakova E.N., Kotik D.S., Sobchakov L.A., Polyakov S.V., Vasil’yev A.V., Bösinger T. Experimental studies of the propagation of artificial electromagnetic signals in the range of 0.6–4.2 Hz. Radiophysics and Quantum Electronics. 2005, vol. 48, no. 9, pp. 700–710. DOI:https://doi.org/10.1007/s11141-005-0114-6.
10. Ermakova E.N., Kotik D.S., Polyakov S.V., Bösinger T., Sobchakov L.A. A power line as a tunable ULF-wave radiator: Properties of artificial signal at distances of 200 to 1000 km. J. Geophys. Res. 2006, vol. 111, A04305. DOI:https://doi.org/10.1029/2005JA011420.
11. Ermakova E.N., Ryabov A.V., Pilipenko V.A., Fedorov E.N., Kudin D.V. New station for monitoring cosmic and atmospheric electromagnetic emissions. Vestnik ONZ RAN [Bulletin of the Earth Sciences Department of the Russian Academy of Sciences]. 2019, vol. 11, NZ1105. DOI:https://doi.org/10.2205/2019NZ000362. (In Russian).
12. Getmantsev G.G., Guglielmi A.V., Klain B.I., Kotik D.S., Krylov S.M., Mitiakov N.A., et al. Excitation of magnetic pulsations when the ionosphere is exposed to radiation from a powerful shortwave transmitter. Radiophysics and Quantum Electronics. 1978, vol. 20, no. 7, pp. 703–705.
13. Guo Z., Fang H., Honary F. The generation of ULF/ELF/VLF waves in the ionosphere by modulated heating. Universe. 2021, vol. 7, no. 2, p. 29. DOI:https://doi.org/10.3390/universe7020029.
14. Kotik D.S., Ryabov A.V., Ermakova E.N., Pershin A.V., Ivanov V.N., Esin V.P. Properties of ULF/VLF signals generated by the SURA facility in the upper ionosphere. Radiophysics and Quantum Electronics. 2013, vol. 56, no. 6, pp. 344–354. DOI:https://doi.org/10.1007/s11141-013-9438-9.
15. Kolobov V.V., Barannik M.B., Zhamaletdinov A.A. Generatorno-izmeritelnyi kompleks “Energiya” dlya elektromagnitnogo zondirovaniya litosfery i monitoringa seismoaktivnykh zon [Generator-measuring complex “Energy” for electromagnetic sounding of the lithosphere and monitoring of seismically active zones]. St. Petersburg, Solo Publ., 2013, 240 p. (In Russian).
16. Li Y., Li H., Wu J., Lyu X., Chai Y., Yuan Ch., et al. Artificial excitation and propagation of ultra-low frequency signals in the polar ionosphere. Phys. Plasmas. 2024, vol. 31, 082901. DOI:https://doi.org/10.1063/5.0202317.
17. Papadopoulos K., Wallace T., Milikh G.M., Peter W., McCarrick M. The magnetic response of the ionosphere to pulsed HF heating. Geophys. Res. Lett. 2005, vol. 32, L13101. DOI:https://doi.org/10.1029/2005GL023185.
18. Papadopoulos K., Gumerov N.A., Shao X., Doxas I., Chang C.L. HF-driven currents in the polar ionosphere. Geophys. Res. Lett. 2011a, vol. 38, L12103. DOI:https://doi.org/10.1029/2011GL047368.
19. Papadopoulos K., Chang C.-L., Labenski J., Wallace T. First demonstration of HF-driven ionospheric currents. Geophys. Res. Lett. 2011b, vol. 38, L20107. DOI:https://doi.org/10.1029/011GL049263.
20. Pilipenko V.А., Fedorov E.N., Martines-Bedenko V.А., Bering E.A. Electric mode excitation in the atmosphere by magnetospheric impulses and ULF waves. Frontiers in Earth Science. 2021a, vol. 8, pp. 687. DOI:https://doi.org/10.3389/feart.2020.619227.
21. Pilipenko V.A., Fedorov E.N., Mazur N.G., Klimov S.I. Electromagnetic pollution of near-Earth space by power line emission. Solar-Terrestrial Physics. 2021b, vol. 7, iss. 3, pp. 105–113. DOI:https://doi.org/10.12737/stp-73202107.
22. Pilipenko V.A., Mazur N.G., Fedorov E.N., Shevtsov A.N. On the possibility of experiments on the excitation of artificial ultra-low-frequency radiation in the ionosphere by the FENICS transmitter on the Kola Peninsula. Bulletin of the Russian Academy of Sciences: Physics. 2024, vol. 88, no. 3, pp. 331–337. DOI:https://doi.org/10.1134/S1062873823705482.
23. Polyakov S.V., Reznikov B.I., Shchennikov A.V., Kopytenko Ye.A., Samsonov B.V. A line of induction magnetic field sensors for geophysical research. Seismicheskie pribory [Seismic Instruments]. 2016, vol. 52, no. 1, pp. 5–27. (In Russian).
24. Su B., Wang Y., Cao Q. Simulation of WEM using ELF modeling of local area and modified UPML. ISAPE 2012. Xi’an, China, 2012. pp. 983–986. DOI:https://doi.org/10.1109/ISAPE.2012.6408939.
25. Usanova M.E., Drozdov A., Orlova K., Mann I.R., Shprits Y., Robertson M.T., et al. Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett. 2014, vol. 41, pp. 1375–1381. DOI:https://doi.org/10.1002/2013GL059024.
26. Velikhov E.P., Zhamaletdinov A.A., Sobchakov L.A., Veshev A.V., Saraev A.K., Tokarev A.D., et al. Experience of frequency electromagnetic sounding of the earth’s crust using a powerful VLF antenna. Doklady AN SSSR [Reports of AS USSR]. 1994, vol. 338, no. 1, pp. 106–109. (In Russian).
27. Zhamaletdinov A.A., Shevtsov A.N., Velikhov E.P., Skorokhodov A.A., Kolesnikov V.E., Korotkova T.G., et al. Study of the interaction of electromagnetic waves of the ELF–VLF range (0.1–200 Hz) with the Earth’s crust and ionosphere in the field of industrial power transmission lines (experiment FENICS). Geofizicheskie protsessy i biosfera [Geophysical processes and the biosphere]. 2015, vol. 14, no. 2, pp. 5–49. (In Russian).
28. Zhamaletdinov A.A., Velikhov E.P., Shevtsov A.N., Skorokhodov A.A., Kolobov V.V., Ivonin V.V., and Kolesnikov V.E. The Murman-2018 experiment on remote sensing in order to study the “impenetrability” boundary at the transition between the brittle and plastic states of the crystalline Earth’s crust. Doklady Earth Sciences. 2019, vol. 486, no. 1, pp. 575–579. DOI:https://doi.org/10.1134/S1028334X19050301.
29. Zhao G.Z., Bi Y.X., Wang L.F., Han B., Wang X., Xiao Q.B., et al. Advances in alternating electromagnetic field data processing for earthquake monitoring in China. Science China Earth Sciences. 2015, vol. 58, no. 2. pp. 172–182. DOI:https://doi.org/10.1007/s11430-014-5012-3.
30. URL: https://www.sgo.fi (accessed March 20, 2025).
31. URL: https://space.fmi.fi/image/www/ (accessed March 20, 2025).
32. URL: http://ckp-rf.ru/ckp/3056/ (accessed March 20, 2025).




